These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35484854)

  • 21. Mixture 2D Convolutions for 3D Medical Image Segmentation.
    Wang J; Zhang L; Zhang Y
    Int J Neural Syst; 2023 Jan; 33(1):2250059. PubMed ID: 36328969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Analysis of the Vulnerability of Two Common Deep Learning-Based Medical Image Segmentation Techniques to Model Inversion Attacks.
    Subbanna N; Wilms M; Tuladhar A; Forkert ND
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks.
    Zhu XL; Shen HB; Sun H; Duan LX; Xu YY
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1303-1311. PubMed ID: 35290645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A deep-learning approach for direct whole-heart mesh reconstruction.
    Kong F; Wilson N; Shadden S
    Med Image Anal; 2021 Dec; 74():102222. PubMed ID: 34543913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning for computational structural optimization.
    Nguyen LC; Nguyen-Xuan H
    ISA Trans; 2020 Aug; 103():177-191. PubMed ID: 32303352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
    Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J
    Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning -- promises for 3D nuclear imaging: a guide for biologists.
    Mougeot G; Dubos T; Chausse F; Péry E; Graumann K; Tatout C; Evans DE; Desset S
    J Cell Sci; 2022 Apr; 135(7):. PubMed ID: 35420128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CAN3D: Fast 3D medical image segmentation via compact context aggregation.
    Dai W; Woo B; Liu S; Marques M; Engstrom C; Greer PB; Crozier S; Dowling JA; Chandra SS
    Med Image Anal; 2022 Nov; 82():102562. PubMed ID: 36049450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification.
    Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L
    Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep compressed sensing MRI via a gradient-enhanced fusion model.
    Dai Y; Wang C; Wang H
    Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Holistic decomposition convolution for effective semantic segmentation of medical volume images.
    Zeng G; Zheng G
    Med Image Anal; 2019 Oct; 57():149-164. PubMed ID: 31302511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning for 3D imaging and image analysis in biomineralization research.
    Reznikov N; Buss DJ; Provencher B; McKee MD; Piché N
    J Struct Biol; 2020 Oct; 212(1):107598. PubMed ID: 32783967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deformable registration of chest CT images using a 3D convolutional neural network based on unsupervised learning.
    Zheng Y; Jiang S; Yang Z
    J Appl Clin Med Phys; 2021 Oct; 22(10):22-35. PubMed ID: 34505341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BX2S-Net: Learning to reconstruct 3D spinal structures from bi-planar X-ray images.
    Chen Z; Guo L; Zhang R; Fang Z; He X; Wang J
    Comput Biol Med; 2023 Mar; 154():106615. PubMed ID: 36739821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Femoral image segmentation based on two-stage convolutional network using 3D-DMFNet and 3D-ResUnet.
    Zhang X; Zheng Y; Bai X; Cai L; Wang L; Wu S; Ke Q; Huang J
    Comput Methods Programs Biomed; 2022 Nov; 226():107110. PubMed ID: 36167001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracing in 2D to reduce the annotation effort for 3D deep delineation of linear structures.
    Koziński M; Mosinska A; Salzmann M; Fua P
    Med Image Anal; 2020 Feb; 60():101590. PubMed ID: 31841949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.