BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35485745)

  • 1. The role of nucleoside triphosphate hydrolase metallochaperones in making metalloenzymes.
    Vaccaro FA; Drennan CL
    Metallomics; 2022 Jun; 14(6):. PubMed ID: 35485745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel Raman spectrophotometric method for quantitative measurement of nucleoside triphosphate hydrolysis.
    Jenkins RH; Tuma R; Juuti JT; Bamford DH; Thomas GJ
    Biospectroscopy; 1999; 5(1):3-8. PubMed ID: 10219876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man.
    Edmonds KA; Jordan MR; Giedroc DP
    Metallomics; 2021 Aug; 13(8):. PubMed ID: 34302342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases.
    Kozlova MI; Shalaeva DN; Dibrova DV; Mulkidjanian AY
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation.
    Yuen MH; Fong YH; Nim YS; Lau PH; Wong KB
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10890-E10898. PubMed ID: 29203664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basis for substrate specificity of the Toxoplasma gondii nucleoside triphosphate hydrolase.
    Nakaar V; Beckers CJ; Polotsky V; Joiner KA
    Mol Biochem Parasitol; 1998 Nov; 97(1-2):209-20. PubMed ID: 9879899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallochaperones: A critical regulator of metal homeostasis and beyond.
    Rono JK; Sun D; Yang ZM
    Gene; 2022 May; 822():146352. PubMed ID: 35183685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving metals: How microbes deliver metal cofactors to metalloproteins.
    Kunkle DE; Skaar EP
    Mol Microbiol; 2023 Oct; 120(4):547-554. PubMed ID: 37408317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphosphatase activity of CthTTM, a bacterial triphosphate tunnel metalloenzyme.
    Jain R; Shuman S
    J Biol Chem; 2008 Nov; 283(45):31047-57. PubMed ID: 18782773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallochaperones and metalloregulation in bacteria.
    Capdevila DA; Edmonds KA; Giedroc DP
    Essays Biochem; 2017 May; 61(2):177-200. PubMed ID: 28487396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule dynamics and mechanisms of metalloregulators and metallochaperones.
    Chen P; Keller AM; Joshi CP; Martell DJ; Andoy NM; Benítez JJ; Chen TY; Santiago AG; Yang F
    Biochemistry; 2013 Oct; 52(41):7170-83. PubMed ID: 24053279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to Interrogate the Role of Nucleotide Hydrolysis by Metal Trafficking NTPases: The Nbp35-Cfd1 Iron-Sulfur Cluster Scaffold as a Case Study.
    Grossman JD; Camire EJ; Perlstein DL
    Methods Enzymol; 2018; 599():293-325. PubMed ID: 29746244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of the Role of Toxoplasma gondii Nucleoside Triphosphate Hydrolases I and II in Acute Mouse Virulence and Immune Suppression.
    Olias P; Sibley LD
    Infect Immun; 2016 Jul; 84(7):1994-2001. PubMed ID: 27091930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily.
    Keppetipola N; Jain R; Shuman S
    J Biol Chem; 2007 Apr; 282(16):11941-9. PubMed ID: 17303560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme.
    Borowski P; Niebuhr A; Mueller O; Bretner M; Felczak K; Kulikowski T; Schmitz H
    J Virol; 2001 Apr; 75(7):3220-9. PubMed ID: 11238848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acylphosphatase possesses nucleoside triphosphatase and nucleoside diphosphatase activities.
    Paoli P; Camici G; Manao G; Giannoni E; Ramponi G
    Biochem J; 2000 Jul; 349(Pt 1):43-9. PubMed ID: 10861209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloprotein Crystallography: More than a Structure.
    Bowman SE; Bridwell-Rabb J; Drennan CL
    Acc Chem Res; 2016 Apr; 49(4):695-702. PubMed ID: 26975689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stereochemical course of nucleoside triphosphatase reactions.
    Webb MR
    Methods Enzymol; 1982; 87():301-16. PubMed ID: 6294452
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.