These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 3548590)
1. Effects of irradiation on growth and toxigenicity of Clostridium botulinum types A and B inoculated onto chicken skins. Dezfulian M; Bartlett JG Appl Environ Microbiol; 1987 Jan; 53(1):201-3. PubMed ID: 3548590 [TBL] [Abstract][Full Text] [Related]
2. Cryogenic gamma irradiation of prototype pork and chicken and antagonistic effect between Clostridium botulinum types A and B. Anellis A; Shattuck E; Morin M; Srisara B; Qvale S; Rowley DB; Ross EW Appl Environ Microbiol; 1977 Dec; 34(6):823-31. PubMed ID: 339839 [TBL] [Abstract][Full Text] [Related]
3. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 38 degrees to 50 degrees F. TID-25231. Eklund MW; Poysky FT TID Rep; 1969 Jan; ():1-33. PubMed ID: 4905817 [No Abstract] [Full Text] [Related]
4. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 36 degrees to 72 degrees F. TID-24881. Eklund MW; Poysky FT; Wieler DI TID Rep; 1966 Jan; ():1-86. PubMed ID: 4905224 [No Abstract] [Full Text] [Related]
5. Aerobic growth and toxigenicity of Clostridium botulinum types A and B. Dezfulian M Folia Microbiol (Praha); 1999; 44(2):167-70. PubMed ID: 10588051 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Graham AF; Mason DR; Maxwell FJ; Peck MW Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311 [TBL] [Abstract][Full Text] [Related]
8. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1979 Mar; 37(3):496-504. PubMed ID: 36843 [TBL] [Abstract][Full Text] [Related]
9. Effect of irradiation temperature in the range--196 to 95C on the resistance of spores of Clostridium botulinum 33A in cooked beef. Grecz N; Walker AA; Anellis A; Berkowitz D Can J Microbiol; 1971 Feb; 17(2):135-42. PubMed ID: 4926793 [No Abstract] [Full Text] [Related]
10. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures. Carlin F; Peck MW Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303 [TBL] [Abstract][Full Text] [Related]
11. Growth and toxin production by Clostridium botulinum in moldy tomato juice. Huhtanen CN; Naghski J; Custer CS; Russell RW Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844 [TBL] [Abstract][Full Text] [Related]
12. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C. Lund BM; Graham AF; George SM J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178 [TBL] [Abstract][Full Text] [Related]
13. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables. Austin JW; Dodds KL; Blanchfield B; Farber JM J Food Prot; 1998 Mar; 61(3):324-8. PubMed ID: 9708304 [TBL] [Abstract][Full Text] [Related]
14. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack. Kimura B; Kimura R; Fukaya T; Sakuma K; Miya S; Fujii T J Food Prot; 2008 Mar; 71(3):468-72. PubMed ID: 18389687 [TBL] [Abstract][Full Text] [Related]
15. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. COO-1095-3. Graikoski JT; Kempe LL COO Rep; 1966 Jan; ():1-100. PubMed ID: 4312998 [No Abstract] [Full Text] [Related]
16. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
17. Clostridium botulinum Toxin Production in Relation to Spoilage of Atlantic Salmon (Salmo salar) Packaged in Films of Varying Oxygen Permeabilities and with Different Atmospheres. Erickson MC; Ma LM; Doyle MP J Food Prot; 2015 Nov; 78(11):2006-18. PubMed ID: 26555524 [TBL] [Abstract][Full Text] [Related]
18. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Lindström M; Kiviniemi K; Korkeala H Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785 [TBL] [Abstract][Full Text] [Related]
19. Growth potential of Clostridium botulinum in fresh mushrooms packaged in semipermeable plastic film. Sugiyama H; Yang KH Appl Microbiol; 1975 Dec; 30(6):964-9. PubMed ID: 1108793 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production. Ma L; Zhang G; Sobel J; Doyle MP J Food Prot; 2007 Dec; 70(12):2860-3. PubMed ID: 18095444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]