These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 35486555)
1. Deep Learning From Multiple Noisy Annotators as A Union. Wei H; Xie R; Feng L; Han B; An B IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10552-10562. PubMed ID: 35486555 [TBL] [Abstract][Full Text] [Related]
2. Learning from crowds for automated histopathological image segmentation. López-Pérez M; Morales-Álvarez P; Cooper LAD; Felicelli C; Goldstein J; Vadasz B; Molina R; Katsaggelos AK Comput Med Imaging Graph; 2024 Mar; 112():102327. PubMed ID: 38194768 [TBL] [Abstract][Full Text] [Related]
3. Transferring Annotator- and Instance-Dependent Transition Matrix for Learning From Crowds. Li S; Xia X; Deng J; Ge S; Liu T IEEE Trans Pattern Anal Mach Intell; 2024 Nov; 46(11):7377-7391. PubMed ID: 38607713 [TBL] [Abstract][Full Text] [Related]
4. Domain-Weighted Majority Voting for Crowdsourcing. Tao D; Cheng J; Yu Z; Yue K; Wang L IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):163-174. PubMed ID: 29994339 [TBL] [Abstract][Full Text] [Related]
5. Learning by aggregating experts and filtering novices: a solution to crowdsourcing problems in bioinformatics. Zhang P; Cao W; Obradovic Z BMC Bioinformatics; 2013; 14 Suppl 12(Suppl 12):S5. PubMed ID: 24268030 [TBL] [Abstract][Full Text] [Related]
6. Learning From Crowds With Multiple Noisy Label Distribution Propagation. Jiang L; Zhang H; Tao F; Li C IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6558-6568. PubMed ID: 34057898 [TBL] [Abstract][Full Text] [Related]
8. Modeling Sequential Annotations for Sequence Labeling With Crowds. Lu X; Chow TWS IEEE Trans Cybern; 2023 Apr; 53(4):2335-2345. PubMed ID: 34665752 [TBL] [Abstract][Full Text] [Related]
9. Crowdsourcing with the drift diffusion model of decision making. Lalvani S; Katsaggelos A Sci Rep; 2024 May; 14(1):11311. PubMed ID: 38760397 [TBL] [Abstract][Full Text] [Related]
10. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation. Liu L; Zhang Z; Li S; Ma K; Zheng Y Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837 [TBL] [Abstract][Full Text] [Related]
11. LEARNING TO DETECT BRAIN LESIONS FROM NOISY ANNOTATIONS. Karimi D; Peters JM; Ouaalam A; Prabhu SP; Sahin M; Krueger DA; Kolevzon A; Eng C; Warfield SK; Gholipour A Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():1910-1914. PubMed ID: 32879655 [TBL] [Abstract][Full Text] [Related]
12. AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images. Albarqouni S; Baur C; Achilles F; Belagiannis V; Demirci S; Navab N IEEE Trans Med Imaging; 2016 May; 35(5):1313-21. PubMed ID: 26891484 [TBL] [Abstract][Full Text] [Related]
13. Active learning with imbalanced multiple noisy labeling. Zhang J; Wu X; Shengs VS IEEE Trans Cybern; 2015 May; 45(5):1081-93. PubMed ID: 25137738 [TBL] [Abstract][Full Text] [Related]
14. A Parametrical Model for Instance-Dependent Label Noise. Yang S; Wu S; Yang E; Han B; Liu Y; Xu M; Niu G; Liu T IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14055-14068. PubMed ID: 37540612 [TBL] [Abstract][Full Text] [Related]
15. Learning from crowds in digital pathology using scalable variational Gaussian processes. López-Pérez M; Amgad M; Morales-Álvarez P; Ruiz P; Cooper LAD; Molina R; Katsaggelos AK Sci Rep; 2021 Jun; 11(1):11612. PubMed ID: 34078955 [TBL] [Abstract][Full Text] [Related]
16. Leveraging non-expert crowdsourcing to segment the optic cup and disc of multicolor fundus images. Zhang J; Zheng Y; Hou W; Jiao W Biomed Opt Express; 2022 Jul; 13(7):3967-3982. PubMed ID: 35991921 [TBL] [Abstract][Full Text] [Related]
17. Generative Reasoning Integrated Label Noise Robust Deep Image Representation Learning. Sumbul G; Demir B IEEE Trans Image Process; 2023; 32():4529-4542. PubMed ID: 37440393 [TBL] [Abstract][Full Text] [Related]
18. An Interactive Method to Improve Crowdsourced Annotations. Liu S; Chen C; Lu Y; Ouyang F; Wang B IEEE Trans Vis Comput Graph; 2018 Aug; ():. PubMed ID: 30130224 [TBL] [Abstract][Full Text] [Related]
19. SAC-Net: Learning with weak and noisy labels in histopathology image segmentation. Guo R; Xie K; Pagnucco M; Song Y Med Image Anal; 2023 May; 86():102790. PubMed ID: 36878159 [TBL] [Abstract][Full Text] [Related]
20. Learning from multiple annotators for medical image segmentation. Zhang L; Tanno R; Xu M; Huang Y; Bronik K; Jin C; Jacob J; Zheng Y; Shao L; Ciccarelli O; Barkhof F; Alexander DC Pattern Recognit; 2023 Jun; 138():None. PubMed ID: 37781685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]