BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35486629)

  • 1. Detection of residual and chemoresistant leukemic cells in an immune-competent mouse model of acute myeloid leukemia: Potential for unravelling their interactions with immunity.
    Mopin A; Leprêtre F; Sebda S; Villenet C; Ben Khoud M; Figeac M; Quesnel B; Brinster C
    PLoS One; 2022; 17(4):e0267508. PubMed ID: 35486629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia.
    Matsunaga T; Fukai F; Miura S; Nakane Y; Owaki T; Kodama H; Tanaka M; Nagaya T; Takimoto R; Takayama T; Niitsu Y
    Leukemia; 2008 Feb; 22(2):353-60. PubMed ID: 17972943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pursuing dynamics of minimal residual leukemic subclones in relapsed and refractory acute myeloid leukemia during conventional therapy.
    Kim D; Kim S; Song H; Gwak D; Min S; Byun JM; Koh Y; Hong J; Yoon SS; Yun H; Shin DY
    Cancer Med; 2024 Apr; 13(7):e7182. PubMed ID: 38591109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of minimal residual disease (MRD) monitoring by WT1 quantification between childhood acute myeloid leukemia and acute lymphoblastic leukemia.
    Zhang R; Yang JY; Sun HQ; Jia H; Liao J; Shi YJ; Li G
    Eur Rev Med Pharmacol Sci; 2015; 19(14):2679-88. PubMed ID: 26221900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular intrinsic mechanism affecting the outcome of AML treated with Ara-C in a syngeneic mouse model.
    Zhao W; Wei L; Tan D; Su G; Zheng Y; He C; Mao ZJ; Singleton TP; Yin B
    PLoS One; 2014; 9(10):e109198. PubMed ID: 25314317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal residual disease as biomarker for optimal biologic dosing of ARA-C in patients with acute myeloid leukemia.
    Maurillo L; Buccisano F; Piciocchi A; Del Principe MI; Sarlo C; Di Veroli A; Panetta P; Irno-Consalvo M; Nasso D; Ditto C; Refrigeri M; De Angelis G; Cerretti R; Arcese W; Sconocchia G; Lo-Coco F; Amadori S; Venditti A
    Am J Hematol; 2015 Feb; 90(2):125-31. PubMed ID: 25377359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-clonal analysis of the murine C1498 acute myeloid leukaemia cell line reveals genomic and immunogenic diversity.
    Driss V; Leprêtre F; Briche I; Mopin A; Villenet C; Figeac M; Quesnel B; Brinster C
    Immunol Lett; 2017 Dec; 192():27-34. PubMed ID: 29030252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emodin and Its Combination with Cytarabine Induce Apoptosis in Resistant Acute Myeloid Leukemia Cells in Vitro and in Vivo.
    Chen Y; Gan D; Huang Q; Luo X; Lin D; Hu J
    Cell Physiol Biochem; 2018; 48(5):2061-2073. PubMed ID: 30099447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High prognostic value of pre-allogeneic stem cell transplantation minimal residual disease detection by WT1 gene expression in AML transplanted in cytologic complete remission.
    Candoni A; De Marchi F; Zannier ME; Lazzarotto D; Filì C; Dubbini MV; Rabassi N; Toffoletti E; Lau BW; Fanin R
    Leuk Res; 2017 Dec; 63():22-27. PubMed ID: 29096332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients.
    San Miguel JF; Martínez A; Macedo A; Vidriales MB; López-Berges C; González M; Caballero D; García-Marcos MA; Ramos F; Fernández-Calvo J; Calmuntia MJ; Diaz-Mediavilla J; Orfao A
    Blood; 1997 Sep; 90(6):2465-70. PubMed ID: 9310499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation sequencing-defined minimal residual disease before stem cell transplantation predicts acute myeloid leukemia relapse.
    Press RD; Eickelberg G; Froman A; Yang F; Stentz A; Flatley EM; Fan G; Lim JY; Meyers G; Maziarz RT; Cook RJ
    Am J Hematol; 2019 Aug; 94(8):902-912. PubMed ID: 31124175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Anti-Leukemic Effects through Induction of Immunomodulating Microenvironment by Blocking CXCR4 and PD-L1 in an AML Mouse Model.
    Hwang HS; Han AR; Lee JY; Park GS; Min WS; Kim HJ
    Immunol Invest; 2019 Jan; 48(1):96-105. PubMed ID: 30204524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gemtuzumab Ozogamicin (GO) Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia.
    Zhang CC; Yan Z; Pascual B; Jackson-Fisher A; Huang DS; Zong Q; Elliott M; Fan C; Huser N; Lee J; Sung M; Sapra P
    Neoplasia; 2018 Jan; 20(1):1-11. PubMed ID: 29172076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia.
    Inoue K; Sugiyama H; Ogawa H; Nakagawa M; Yamagami T; Miwa H; Kita K; Hiraoka A; Masaoka T; Nasu K
    Blood; 1994 Nov; 84(9):3071-9. PubMed ID: 7949179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the detection of minimal residual disease for the prognosis and the choice of post-remission therapy of intermediate-risk acute myeloid leukemia without FLT3-ITD, NPM1 and biallelic CEBPA mutations.
    Zheng WS; Hu YL; Guan LX; Peng B; Wang SY
    Hematology; 2021 Dec; 26(1):179-185. PubMed ID: 33594943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical values of gene alterations as marker of minimal residual disease in non-M3 acute myeloid leukemia.
    Yu T; Chi J; Wang L
    Hematology; 2021 Dec; 26(1):848-859. PubMed ID: 34674615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual Disease in a Novel Xenograft Model of RUNX1-Mutated, Cytogenetically Normal Acute Myeloid Leukemia.
    Sivagnanalingam U; Balys M; Eberhardt A; Wang N; Myers JR; Ashton JM; Becker MW; Calvi LM; Mendler JH
    PLoS One; 2015; 10(7):e0132375. PubMed ID: 26177509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and treatment of molecular relapse in acute myeloid leukemia with RUNX1 (AML1), CBFB, or MLL gene translocations: frequent quantitative monitoring of molecular markers in different compartments and correlation with WT1 gene expression.
    Doubek M; Palasek I; Pospisil Z; Borsky M; Klabusay M; Brychtova Y; Jurcek T; Jeziskova I; Krejci M; Dvorakova D; Mayer J
    Exp Hematol; 2009 Jun; 37(6):659-72. PubMed ID: 19463768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells.
    Kouzi F; Zibara K; Bourgeais J; Picou F; Gallay N; Brossaud J; Dakik H; Roux B; Hamard S; Le Nail LR; Hleihel R; Foucault A; Ravalet N; Rouleux-Bonnin F; Gouilleux F; Mazurier F; Bene MC; Akl H; Gyan E; Domenech J; El-Sabban M; Herault O
    Oncogene; 2020 Feb; 39(6):1198-1212. PubMed ID: 31649334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving Therapies in Acute Myeloid Leukemia: Progress at Last?
    DeAngelo DJ; Stein EM; Ravandi F
    Am Soc Clin Oncol Educ Book; 2016; 35():e302-12. PubMed ID: 27249736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.