These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35486839)

  • 1. LM-Jelly: Liquid Metal Enabled Biomimetic Robotic Jellyfish.
    Ye J; Yao YC; Gao JY; Chen S; Zhang P; Sheng L; Liu J
    Soft Robot; 2022 Dec; 9(6):1098-1107. PubMed ID: 35486839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrust force characterization of free-swimming soft robotic jellyfish.
    Frame J; Lopez N; Curet O; Engeberg ED
    Bioinspir Biomim; 2018 Sep; 13(6):064001. PubMed ID: 30226216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators.
    Villanueva A; Smith C; Priya S
    Bioinspir Biomim; 2011 Sep; 6(3):036004. PubMed ID: 21852714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Hydrodynamics of Jellyfish Swimming.
    Costello JH; Colin SP; Dabiri JO; Gemmell BJ; Lucas KN; Sutherland KR
    Ann Rev Mar Sci; 2021 Jan; 13():375-396. PubMed ID: 32600216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers.
    Olsen ZJ; Kim KJ
    Front Robot AI; 2019; 6():112. PubMed ID: 33501127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-functional soft-bodied jellyfish-like swimming.
    Ren Z; Hu W; Dong X; Sitti M
    Nat Commun; 2019 Jul; 10(1):2703. PubMed ID: 31266939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jelly-Z: swimming performance and analysis of twisted and coiled polymer (TCP) actuated jellyfish soft robot.
    Matharu PS; Gong P; Guntaka KPR; Almubarak Y; Jin Y; Tadesse YT
    Sci Rep; 2023 Jul; 13(1):11086. PubMed ID: 37422482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics.
    Lv P; Yang X; Bisoyi HK; Zeng H; Zhang X; Chen Y; Xue P; Shi S; Priimagi A; Wang L; Feng W; Li Q
    Mater Horiz; 2021 Aug; 8(9):2475-2484. PubMed ID: 34870302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic soft micro-swimmers: from actuation mechanisms to applications.
    Fu S; Wei F; Yin C; Yao L; Wang Y
    Biomed Microdevices; 2021 Jan; 23(1):6. PubMed ID: 33420838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-Inspired Transparent Soft Jellyfish Robot.
    Wang Y; Zhang P; Huang H; Zhu J
    Soft Robot; 2023 Jun; 10(3):590-600. PubMed ID: 36577053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design considerations for an underwater soft-robot inspired from marine invertebrates.
    Krieg M; Sledge I; Mohseni K
    Bioinspir Biomim; 2015 Oct; 10(6):065004. PubMed ID: 26513603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle.
    Wang R; Zhang C; Zhang Y; Yang L; Tan W; Qin H; Wang F; Liu L
    Soft Robot; 2024 Feb; ():. PubMed ID: 38407844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromechanical wave resonance in jellyfish swimming.
    Hoover AP; Xu NW; Gemmell BJ; Colin SP; Costello JH; Dabiri JO; Miller LA
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation.
    Wang T; Joo HJ; Song S; Hu W; Keplinger C; Sitti M
    Sci Adv; 2023 Apr; 9(15):eadg0292. PubMed ID: 37043565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly.
    Villanueva A; Vlachos P; Priya S
    PLoS One; 2014; 9(6):e98310. PubMed ID: 24905025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV
    Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic and live medusae reveal the mechanistic advantages of a flexible bell margin.
    Colin SP; Costello JH; Dabiri JO; Villanueva A; Blottman JB; Gemmell BJ; Priya S
    PLoS One; 2012; 7(11):e48909. PubMed ID: 23145016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
    Shen Q; Wang T; Kim KJ
    Bioinspir Biomim; 2015 Sep; 10(5):055007. PubMed ID: 26414228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.