These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35487151)

  • 1. Inhibitory mechanism of Ambroxol and Bromhexine Hydrochlorides as potent blockers of molecular interaction between SARS-CoV-2 spike protein and human angiotensin-converting Enzyme-2.
    Kehinde IA; Egbejimi A; Kaur M; Onyenaka C; Adebusuyi T; Olaleye OA
    J Mol Graph Model; 2022 Jul; 114():108201. PubMed ID: 35487151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike.
    Kehinde IA; Egbeyemi A; Kaur M; Onyenaka C; Adebusuyi T; Olaleye OA
    J Biomol Struct Dyn; 2023 Apr; 41(7):2992-3001. PubMed ID: 35220925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation.
    Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS
    J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambroxol Hydrochloride Inhibits the Interaction between Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein's Receptor Binding Domain and Recombinant Human ACE2.
    Olaleye OA; Kaur M; Onyenaka CC
    bioRxiv; 2020 Sep; ():. PubMed ID: 32995775
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Pandey AK; Verma S
    Drug Dev Ind Pharm; 2022 Oct; 48(10):539-551. PubMed ID: 36250723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ACE-2-Derived Biomimetic Peptides for the Inhibition of Spike Protein of SARS-CoV-2.
    Panda SK; Sen Gupta PS; Biswal S; Ray AK; Rana MK
    J Proteome Res; 2021 Feb; 20(2):1296-1303. PubMed ID: 33472369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Spike-hACE 2 Residue-Residue Interaction in Human Coronaviruses SARS-CoV-2, SARS-CoV, and HCoV-NL63.
    Lima Neto JX; Vieira DS; de Andrade J; Fulco UL
    J Chem Inf Model; 2022 Jun; 62(11):2857-2868. PubMed ID: 35617018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2.
    Ohishi T; Hishiki T; Baig MS; Rajpoot S; Saqib U; Takasaki T; Hara Y
    PLoS One; 2022; 17(7):e0271112. PubMed ID: 35830431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of the effect of mutations in the receptor-binding domain on the interaction between SARS-CoV-2 and human ACE2.
    Celik I; Khan A; Dwivany FM; Fatimawali ; Wei DQ; Tallei TE
    Mol Divers; 2022 Dec; 26(6):3309-3324. PubMed ID: 35138508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An angiotensin-converting enzyme-2-derived heptapeptide GK-7 for SARS-CoV-2 spike blockade.
    Han S; Zhao G; Wei Z; Chen Y; Zhao J; He Y; He YJ; Gao J; Chen S; Du C; Wang T; Sun W; Huang Y; Wang C; Wang J
    Peptides; 2021 Nov; 145():170638. PubMed ID: 34419496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer.
    Bharathi M; Sivamaruthi BS; Kesika P; Thangaleela S; Chaiyasut C
    Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Reveals Complex Compensatory Effects of Ionic Strength on the Severe Acute Respiratory Syndrome Coronavirus 2 Spike/Human Angiotensin-Converting Enzyme 2 Interaction.
    Silva de Souza A; Rivera JD; Almeida VM; Ge P; de Souza RF; Farah CS; Ulrich H; Marana SR; Salinas RK; Guzzo CR
    J Phys Chem Lett; 2020 Dec; 11(24):10446-10453. PubMed ID: 33269932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline as an inhibitor to the SARS-CoV-2.
    Zhao TY; Patankar NA
    J Cell Biochem; 2021 Jul; 122(7):752-759. PubMed ID: 33619758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Withanone from
    Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A
    Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19).
    Nayak SK
    Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein.
    Pei P; Qin H; Chen J; Wang F; He C; He S; Hong B; Liu K; Qiao R; Fan H; Tong Y; Chen L; Luo SZ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34180984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2.
    Uhomoibhi JO; Shode FO; Idowu KA; Sabiu S
    J Mol Graph Model; 2022 Jul; 114():108185. PubMed ID: 35430474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mulberrofuran G, a Mulberry Component, Prevents SARS-CoV-2 Infection by Blocking the Interaction between SARS-CoV-2 Spike Protein S1 Receptor-Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor.
    Kim YS; Kim B; Kwon EB; Chung HS; Choi JG
    Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy.
    Ridgway H; Chasapis CT; Kelaidonis K; Ligielli I; Moore GJ; Gadanec LK; Zulli A; Apostolopoulos V; Mavromoustakos T; Matsoukas JM
    Viruses; 2022 May; 14(5):. PubMed ID: 35632769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection.
    Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB
    Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.