BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35487269)

  • 1. Performing protein fold recognition by exploiting a stack convolutional neural network with the attention mechanism.
    Han K; Liu Y; Xu J; Song J; Yu DJ
    Anal Biochem; 2022 Aug; 651():114695. PubMed ID: 35487269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why can deep convolutional neural networks improve protein fold recognition? A visual explanation by interpretation.
    Liu Y; Zhu YH; Song X; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33537753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving protein fold recognition using triplet network and ensemble deep learning.
    Liu Y; Han K; Zhu YH; Zhang Y; Shen LC; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ResCNNT-fold: Combining residual convolutional neural network and Transformer for protein fold recognition from language model embeddings.
    Qin X; Liu M; Liu G
    Comput Biol Med; 2023 Nov; 166():107571. PubMed ID: 37864911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-3L 3.0: Improving Signal Peptide Prediction through Combining Attention Deep Learning with Window-Based Scoring.
    Zhang WX; Pan X; Shen HB
    J Chem Inf Model; 2020 Jul; 60(7):3679-3686. PubMed ID: 32501689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks.
    Feng SH; Xia CQ; Shen HB
    Bioinformatics; 2022 Jan; 38(3):720-729. PubMed ID: 34718416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSCpred: Single-Sequence-Based Protein Contact Prediction Using Deep Fully Convolutional Network.
    Chen MC; Li Y; Zhu YH; Ge F; Yu DJ
    J Chem Inf Model; 2020 Jun; 60(6):3295-3303. PubMed ID: 32338512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProDCoNN: Protein design using a convolutional neural network.
    Zhang Y; Chen Y; Wang C; Lo CC; Liu X; Wu W; Zhang J
    Proteins; 2020 Jul; 88(7):819-829. PubMed ID: 31867753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction.
    Chen C; Wu T; Guo Z; Cheng J
    Proteins; 2021 Jun; 89(6):697-707. PubMed ID: 33538038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Protein Fold Recognition by Deep Learning Networks.
    Jo T; Hou J; Eickholt J; Cheng J
    Sci Rep; 2015 Dec; 5():17573. PubMed ID: 26634993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BindWeb: A web server for ligand binding residue and pocket prediction from protein structures.
    Xia Y; Xia C; Pan X; Shen HB
    Protein Sci; 2022 Dec; 31(12):e4462. PubMed ID: 36190332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MotifCNN-fold: protein fold recognition based on fold-specific features extracted by motif-based convolutional neural networks.
    Li CC; Liu B
    Brief Bioinform; 2020 Dec; 21(6):2133-2141. PubMed ID: 31774907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.