These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 35487380)
1. Combination of cellulose and plant oil toward sustainable bottlebrush copolymer elastomers with tunable mechanical performance. Yu H; Feng J; Tang P; Chen S; Wang Z; Wang Z; Jiang F Int J Biol Macromol; 2022 Jun; 209(Pt B):1848-1857. PubMed ID: 35487380 [TBL] [Abstract][Full Text] [Related]
2. Ultra-stretchable chitin-based branched elastomers with enhanced mechanical properties via RAFT polymerization. Wang Z; Zhang L; Feng J; Tang P; Chen S; Yu H; Hu Y; Wang Z; Jiang F Carbohydr Polym; 2022 Jul; 288():119381. PubMed ID: 35450643 [TBL] [Abstract][Full Text] [Related]
3. Wholly sustainable graft copolymers derived from cellulose, lignin, and hemicellulose for high-performance elastomers, adhesives, and UV-blocking materials. Feng J; Xing Y; Yin C; Tang P; Jiang F Carbohydr Polym; 2024 Feb; 326():121606. PubMed ID: 38142094 [TBL] [Abstract][Full Text] [Related]
4. To Mimic Mechanical Properties of the Skin by Inducing Oriented Nanofiber Microstructures in Bottlebrush Cellulose- Zhang J; Keith AN; Sheiko SS; Wang X; Wang Z ACS Appl Mater Interfaces; 2021 Jan; 13(2):3278-3286. PubMed ID: 33416300 [TBL] [Abstract][Full Text] [Related]
5. Sustainable chitin-derived elastomers via grafting strategy with tunable mechanical and adhesion properties. Xing Y; Wei Y; Ge C; Hu R; Zhang Y; Wang B; Wang Z; Jiang F Int J Biol Macromol; 2024 Nov; 279(Pt 3):135289. PubMed ID: 39236958 [TBL] [Abstract][Full Text] [Related]
6. Fully biobased sustainable elastomers derived from chitin, lignin, and plant oil via grafting strategy and Schiff-base chemistry. Wang Z; Tang P; Chen S; Xing Y; Yin C; Feng J; Jiang F Carbohydr Polym; 2023 Apr; 305():120577. PubMed ID: 36737210 [TBL] [Abstract][Full Text] [Related]
7. Nanostructures, Linear Rheological Responses, and Tunable Mechanical Properties of Microphase-Separated Cellulose- Sun H; Wang X; Chen Q; Wang Z Biomacromolecules; 2023 Aug; 24(8):3647-3656. PubMed ID: 37462907 [TBL] [Abstract][Full Text] [Related]
8. Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry. Yu J; Lu C; Wang C; Wang J; Fan Y; Chu F Carbohydr Polym; 2017 Nov; 176():83-90. PubMed ID: 28927630 [TBL] [Abstract][Full Text] [Related]
9. Sustainable Elastomers from Renewable Biomass. Wang Z; Yuan L; Tang C Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365 [TBL] [Abstract][Full Text] [Related]
10. Strong and ultrafast stimulus-healable lignin-based composite elastomers with excellent adhesion properties. Ou Y; Xing Y; Yang Z; Huang J; He J; Jiang F; Zhang Y Int J Biol Macromol; 2024 Jan; 256(Pt 2):128507. PubMed ID: 38040144 [TBL] [Abstract][Full Text] [Related]
11. The synthesis of bottlebrush cellulose-graft-diblock copolymer elastomers via atom transfer radical polymerization utilizing a halide exchange technique. Zhang J; Wang Z; Wang X; Wang Z Chem Commun (Camb); 2019 Nov; 55(92):13904-13907. PubMed ID: 31681914 [TBL] [Abstract][Full Text] [Related]
12. Sustainable elastomers derived from cellulose, rosin and fatty acid by a combination of "graft from" RAFT and isocyanate chemistry. Cheng Z; Liu Y; Zhang D; Lu C; Wang C; Xu F; Wang J; Chu F Int J Biol Macromol; 2019 Jun; 131():387-395. PubMed ID: 30880052 [TBL] [Abstract][Full Text] [Related]
13. Integration of metal-free ATRP and Diels-Alder reaction toward sustainable and recyclable cellulose-based thermoset elastomers. Lu C; Guo X; Wang C; Wang J; Chu F Carbohydr Polym; 2020 Aug; 242():116404. PubMed ID: 32564832 [TBL] [Abstract][Full Text] [Related]
14. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Yu J; Wang C; Wang J; Chu F Carbohydr Polym; 2016 May; 141():143-50. PubMed ID: 26877006 [TBL] [Abstract][Full Text] [Related]
15. Highly Extensible Supramolecular Elastomers with Large Stress Generation Capability Originating from Multiple Hydrogen Bonds on the Long Soft Network Strands. Hayashi M; Noro A; Matsushita Y Macromol Rapid Commun; 2016 Apr; 37(8):678-84. PubMed ID: 26914643 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable poly(ethylene glycol-glycerol-itaconate-sebacate) copolyester elastomer with significantly reinforced mechanical properties by in-situ construction of bacterial cellulose interpenetrating network. Tang L; Jin Y; He X; Huang R Sci Rep; 2024 Mar; 14(1):7172. PubMed ID: 38531891 [TBL] [Abstract][Full Text] [Related]
17. Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers. Jiang F; Zhang Y; Wang Z; Wang W; Xu Z; Wang Z ACS Appl Mater Interfaces; 2015 May; 7(19):10563-75. PubMed ID: 25954980 [TBL] [Abstract][Full Text] [Related]
18. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives. Satoh K; Lee DH; Nagai K; Kamigaito M Macromol Rapid Commun; 2014 Jan; 35(2):161-167. PubMed ID: 24243816 [TBL] [Abstract][Full Text] [Related]