These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35487502)

  • 1. SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging.
    Lenzi E; Jimenez de Aberasturi D; Henriksen-Lacey M; Piñeiro P; Muniz AJ; Lahann J; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2022 May; 14(18):20708-20719. PubMed ID: 35487502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold-Hydrogel Nanocomposites for High-Resolution Laser-Based 3D Printing of Scaffolds with SERS-Sensing Properties.
    Ventisette I; Mattii F; Dallari C; Capitini C; Calamai M; Muzzi B; Pavone FS; Carpi F; Credi C
    ACS Appl Bio Mater; 2024 Jul; 7(7):4497-4509. PubMed ID: 38925631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Scaffold-Assisted 3D Cancer Cell Model for Surface-Enhanced Raman Scattering-Based Real-Time Sensing and Imaging.
    García-Astrain C; Henriksen-Lacey M; Lenzi E; Renero-Lecuna C; Langer J; Piñeiro P; Molina-Martínez B; Plou J; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Nano; 2024 Apr; 18(17):11257-11269. PubMed ID: 38632933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS-Active Printable Hydrogel for 3D Cell Culture and Imaging.
    Wang W; Vikesland PJ
    Anal Chem; 2023 Dec; 95(49):18055-18064. PubMed ID: 37934619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of core-shell surface-enhanced Raman tags for bioimaging.
    Liu X; Knauer M; Ivleva NP; Niessner R; Haisch C
    Anal Chem; 2010 Jan; 82(1):441-6. PubMed ID: 19957963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection.
    Indrasekara AS; Paladini BJ; Naczynski DJ; Starovoytov V; Moghe PV; Fabris L
    Adv Healthc Mater; 2013 Oct; 2(10):1370-6. PubMed ID: 23495174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Enhanced Raman Scattering Bioimaging with an Ultrahigh Signal-to-Background Ratio under Ambient Light.
    Zhu S; Deng B; Liu F; Li J; Lin L; Ye J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8876-8887. PubMed ID: 35157434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging.
    Niu X; Chen H; Wang Y; Wang W; Sun X; Chen L
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5152-60. PubMed ID: 24617579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection.
    Lenzi E; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Sens; 2019 May; 4(5):1126-1137. PubMed ID: 31046243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC
    Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS Tags for Biomedical Detection and Bioimaging.
    Liu H; Gao X; Xu C; Liu D
    Theranostics; 2022; 12(4):1870-1903. PubMed ID: 35198078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex cellular environments imaged by SERS nanoprobes using sugars as an all-in-one vector.
    Gomes MC; Chen J; Cunha A; Trindade T; Zheng G; Tomé JPC
    J Mater Chem B; 2021 Nov; 9(45):9285-9294. PubMed ID: 34709285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Mode Nanoprobes Based on Lanthanide Doped Fluoride Nanoparticles Functionalized by Aryl Diazonium Salts for Fluorescence and SERS Bioimaging.
    Chen H; Nizard P; Decorse P; Nowak S; Ammar-Merah S; Pinson J; Gazeau F; Mangeney C; Luo Y
    Small; 2024 Mar; 20(10):e2305346. PubMed ID: 37875723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L
    Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.