These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35487761)
41. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. Singh BN; Pramanik K J Biomater Sci Polym Ed; 2018 Nov; 29(16):2011-2034. PubMed ID: 30209974 [TBL] [Abstract][Full Text] [Related]
42. Functionalized core/shell nanofibers for the differentiation of mesenchymal stem cells for vascular tissue engineering. Ezhilarasu H; Sadiq A; Ratheesh G; Sridhar S; Ramakrishna S; Ab Rahim MH; Yusoff MM; Jose R; Reddy VJ Nanomedicine (Lond); 2019 Jan; 14(2):201-214. PubMed ID: 30526272 [TBL] [Abstract][Full Text] [Related]
43. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285 [TBL] [Abstract][Full Text] [Related]
44. Development of a biomimetic arch-like 3D bioprinted construct for cartilage regeneration using gelatin methacryloyl and silk fibroin-gelatin bioinks. Chakraborty J; Fernández-Pérez J; van Kampen KA; Roy S; Ten Brink T; Mota C; Ghosh S; Moroni L Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36947889 [TBL] [Abstract][Full Text] [Related]
45. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [TBL] [Abstract][Full Text] [Related]
46. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Teh TK; Toh SL; Goh JC Tissue Eng Part A; 2013 Jun; 19(11-12):1360-72. PubMed ID: 23327653 [TBL] [Abstract][Full Text] [Related]
47. Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Nune M; Manchineella S; T G; K S N Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():17-25. PubMed ID: 30423699 [TBL] [Abstract][Full Text] [Related]
48. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Chen J; Yan C; Zhu M; Yao Q; Shao C; Lu W; Wang J; Mo X; Gu P; Fu Y; Fan X Int J Nanomedicine; 2015; 10():3337-50. PubMed ID: 26005345 [TBL] [Abstract][Full Text] [Related]
49. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Park YR; Ju HW; Lee JM; Kim DK; Lee OJ; Moon BM; Park HJ; Jeong JY; Yeon YK; Park CH Int J Biol Macromol; 2016 Dec; 93(Pt B):1567-1574. PubMed ID: 27431792 [TBL] [Abstract][Full Text] [Related]
50. Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Li Y; Zhang J; Wang C; Jiang Z; Lai K; Wang Y; Yang G Acta Biomater; 2023 Feb; 157():108-123. PubMed ID: 36435441 [TBL] [Abstract][Full Text] [Related]
51. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770 [TBL] [Abstract][Full Text] [Related]
52. Bifunctional naringenin-laden gelatin methacryloyl scaffolds with osteogenic and anti-inflammatory properties. Cardoso LM; de Carvalho ABG; Anselmi C; Mahmoud AH; Dal-Fabbro R; Basso FG; Bottino MC Dent Mater; 2024 Sep; 40(9):1353-1363. PubMed ID: 38876826 [TBL] [Abstract][Full Text] [Related]
54. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. Gandhimathi C; Venugopal JR; Bhaarathy V; Ramakrishna S; Kumar SD Int J Nanomedicine; 2014; 9():4709-22. PubMed ID: 25336949 [TBL] [Abstract][Full Text] [Related]
55. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
56. Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration. Farasatkia A; Kharaziha M; Ashrafizadeh F; Salehi S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111744. PubMed ID: 33545886 [TBL] [Abstract][Full Text] [Related]
57. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L‑lactic acid) fibrous meshes. Wu S; Peng H; Li X; Streubel PN; Liu Y; Duan B Biofabrication; 2017 Nov; 9(4):044106. PubMed ID: 29134948 [TBL] [Abstract][Full Text] [Related]
58. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
59. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Sawatjui N; Damrongrungruang T; Leeanansaksiri W; Jearanaikoon P; Hongeng S; Limpaiboon T Mater Sci Eng C Mater Biol Appl; 2015; 52():90-6. PubMed ID: 25953544 [TBL] [Abstract][Full Text] [Related]
60. Silk fibroin nanofibers enhance cell adhesion of blood-derived fibroblast-like cells: A potential application for wound healing. Nikam VS; Punde DS; Bhandari RS Indian J Pharmacol; 2020; 52(4):306-312. PubMed ID: 33078732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]