BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 35487785)

  • 1. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia.
    Ung J; Tan SF; Fox TE; Shaw JJP; Vass LR; Costa-Pinheiro P; Garrett-Bakelman FE; Keng MK; Sharma A; Claxton DF; Levine RL; Tallman MS; Cabot MC; Kester M; Feith DJ; Loughran TP
    Blood Rev; 2022 Sep; 55():100950. PubMed ID: 35487785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceramide Analogue SACLAC Modulates Sphingolipid Levels and
    Pearson JM; Tan SF; Sharma A; Annageldiyev C; Fox TE; Abad JL; Fabrias G; Desai D; Amin S; Wang HG; Cabot MC; Claxton DF; Kester M; Feith DJ; Loughran TP
    Mol Cancer Res; 2020 Mar; 18(3):352-363. PubMed ID: 31744877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid ceramidase is upregulated in AML and represents a novel therapeutic target.
    Tan SF; Liu X; Fox TE; Barth BM; Sharma A; Turner SD; Awwad A; Dewey A; Doi K; Spitzer B; Shah MV; Morad SA; Desai D; Amin S; Zhu J; Liao J; Yun J; Kester M; Claxton DF; Wang HG; Cabot MC; Schuchman EH; Levine RL; Feith DJ; Loughran TP
    Oncotarget; 2016 Dec; 7(50):83208-83222. PubMed ID: 27825124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels.
    Chen L; Luo LF; Lu J; Li L; Liu YF; Wang J; Liu H; Song H; Jiang H; Chen SJ; Luo C; Li KK
    PLoS One; 2014; 9(7):e103033. PubMed ID: 25050888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function.
    Ghazaly EA; Miraki-Moud F; Smith P; Gnanaranjan C; Koniali L; Oke A; Saied MH; Petty R; Matthews J; Stronge R; Joel SP; Young BD; Gribben J; Taussig DC
    J Biol Chem; 2020 Apr; 295(16):5496-5508. PubMed ID: 32161116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies.
    Raza Y; Atallah J; Luberto C
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic applications of bioactive sphingolipids in hematological malignancies.
    Ekiz HA; Baran Y
    Int J Cancer; 2010 Oct; 127(7):1497-506. PubMed ID: 20503271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Click reactions with functional sphingolipids.
    Fink J; Seibel J
    Biol Chem; 2018 Sep; 399(10):1157-1168. PubMed ID: 29908120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era.
    Shaw J; Costa-Pinheiro P; Patterson L; Drews K; Spiegel S; Kester M
    Adv Cancer Res; 2018; 140():327-366. PubMed ID: 30060815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids.
    Gatt S; Dagan A
    Chem Phys Lipids; 2012 May; 165(4):462-74. PubMed ID: 22387097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia.
    Powell JA; Lewis AC; Zhu W; Toubia J; Pitman MR; Wallington-Beddoe CT; Moretti PA; Iarossi D; Samaraweera SE; Cummings N; Ramshaw HS; Thomas D; Wei AH; Lopez AF; D'Andrea RJ; Lewis ID; Pitson SM
    Blood; 2017 Feb; 129(6):771-782. PubMed ID: 27956387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of acid ceramidase as a therapeutic target for acute myeloid leukemia.
    Tan SF; Pearson JM; Feith DJ; Loughran TP
    Expert Opin Ther Targets; 2017 Jun; 21(6):583-590. PubMed ID: 28434262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance.
    Ponnusamy S; Meyers-Needham M; Senkal CE; Saddoughi SA; Sentelle D; Selvam SP; Salas A; Ogretmen B
    Future Oncol; 2010 Oct; 6(10):1603-24. PubMed ID: 21062159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia.
    Yun SH; Shin SW; Stonik VA; Park JI
    Mar Drugs; 2016 Nov; 14(11):. PubMed ID: 27827870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia.
    Barth BM; Wang W; Toran PT; Fox TE; Annageldiyev C; Ondrasik RM; Keasey NR; Brown TJ; Devine VG; Sullivan EC; Cote AL; Papakotsi V; Tan SF; Shanmugavelandy SS; Deering TG; Needle DB; Stern ST; Zhu J; Liao J; Viny AD; Feith DJ; Levine RL; Wang HG; Loughran TP; Sharma A; Kester M; Claxton DF
    Blood Adv; 2019 Sep; 3(17):2598-2603. PubMed ID: 31488436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of sphingolipid metabolism: from synthesis to breakdown.
    Gault CR; Obeid LM; Hannun YA
    Adv Exp Med Biol; 2010; 688():1-23. PubMed ID: 20919643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected profile of sphingolipid contents in blood and bone marrow plasma collected from patients diagnosed with acute myeloid leukemia.
    Wątek M; Durnaś B; Wollny T; Pasiarski M; Góźdź S; Marzec M; Chabowska A; Wolak P; Żendzian-Piotrowska M; Bucki R
    Lipids Health Dis; 2017 Dec; 16(1):235. PubMed ID: 29216917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The unfolding role of ceramide in coordinating retinoid-based cancer therapy.
    Ghandour B; Dbaibo G; Darwiche N
    Biochem J; 2021 Oct; 478(19):3621-3642. PubMed ID: 34648006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic, non-natural sphingolipid analogs inhibit the biosynthesis of cellular sphingolipids, elevate ceramide and induce apoptotic cell death.
    Dagan A; Wang C; Fibach E; Gatt S
    Biochim Biophys Acta; 2003 Sep; 1633(3):161-9. PubMed ID: 14499735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.