BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 35487785)

  • 41. Impact of Sphingolipid Mediators on the Determination of Cochlear Survival in Ototoxicity.
    Tabuchi K; Hara A
    Curr Mol Pharmacol; 2018; 11(4):279-284. PubMed ID: 29766830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells.
    Apraiz A; Idkowiak-Baldys JK; Boyano MD; Pérez-Yarza G; Hannun YA; Asumendi A
    BMC Cancer; 2011 Nov; 11():477. PubMed ID: 22061047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sphingolipid metabolic changes during chiral C2-ceramides induced apoptosis in human leukemia cells.
    Baek MY; Yoo HS; Nakaya K; Moon DC; Lee YM
    Arch Pharm Res; 2001 Apr; 24(2):144-9. PubMed ID: 11339634
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sphingosine 1-phosphate receptor 2/4 antagonist JTE-013 elicits off-target effects on sphingolipid metabolism.
    Pitman MR; Lewis AC; Davies LT; Moretti PAB; Anderson D; Creek DJ; Powell JA; Pitson SM
    Sci Rep; 2022 Jan; 12(1):454. PubMed ID: 35013382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sphingolipids: regulators of crosstalk between apoptosis and autophagy.
    Young MM; Kester M; Wang HG
    J Lipid Res; 2013 Jan; 54(1):5-19. PubMed ID: 23152582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting sphingolipid metabolism in head and neck cancer: rational therapeutic potentials.
    Beckham TH; Elojeimy S; Cheng JC; Turner LS; Hoffman SR; Norris JS; Liu X
    Expert Opin Ther Targets; 2010 May; 14(5):529-39. PubMed ID: 20334489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sphingolipids in mitochondria.
    Hernández-Corbacho MJ; Salama MF; Canals D; Senkal CE; Obeid LM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jan; 1862(1):56-68. PubMed ID: 27697478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of sphingolipid metabolism disorders on endothelial cells.
    Lai Y; Tian Y; You X; Du J; Huang J
    Lipids Health Dis; 2022 Oct; 21(1):101. PubMed ID: 36229882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sphingolipids in mammalian cell signalling.
    Ohanian J; Ohanian V
    Cell Mol Life Sci; 2001 Dec; 58(14):2053-68. PubMed ID: 11814056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia.
    Watters RJ; Fox TE; Tan SF; Shanmugavelandy S; Choby JE; Broeg K; Liao J; Kester M; Cabot MC; Loughran TP; Liu X
    Leuk Lymphoma; 2013 Jun; 54(6):1288-96. PubMed ID: 23181473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders.
    Czubowicz K; Jęśko H; Wencel P; Lukiw WJ; Strosznajder RP
    Mol Neurobiol; 2019 Aug; 56(8):5436-5455. PubMed ID: 30612333
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel jaspine B-ceramide hybrid modulates sphingolipid metabolism.
    Garcia V; Le Faouder P; Dupuy A; Levade T; Ballereau S; Génisson Y
    Chem Biodivers; 2015 Jul; 12(7):1115-25. PubMed ID: 26172331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle.
    Nikolova-Karakashian MN; Reid MB
    Antioxid Redox Signal; 2011 Nov; 15(9):2501-17. PubMed ID: 21453197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways.
    Hajj C; Becker-Flegler KA; Haimovitz-Friedman A
    Biol Chem; 2015 Jun; 396(6-7):669-79. PubMed ID: 25719313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sphingolipid metabolism and leukemia: a potential for novel therapeutic approaches.
    Burns TA; Luberto C
    Anticancer Agents Med Chem; 2011 Nov; 11(9):863-81. PubMed ID: 21707485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response.
    Corsetto PA; Zava S; Rizzo AM; Colombo I
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sphingolipids in inflammation: roles and implications.
    Pettus BJ; Chalfant CE; Hannun YA
    Curr Mol Med; 2004 Jun; 4(4):405-18. PubMed ID: 15354871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction.
    Boslem E; Meikle PJ; Biden TJ
    Islets; 2012; 4(3):177-87. PubMed ID: 22847494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism.
    Kleuser B; Schumacher F; Gulbins E
    Handb Exp Pharmacol; 2024; 284():289-312. PubMed ID: 37922034
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer.
    Voelkel-Johnson C; Norris JS; White-Gilbertson S
    Adv Cancer Res; 2018; 140():265-293. PubMed ID: 30060812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.