BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35487959)

  • 1. Topographical relocation of adolescent sleep spindles reveals a new maturational pattern in the human brain.
    Gombos F; Bódizs R; Pótári A; Bocskai G; Berencsi A; Szakács H; Kovács I
    Sci Rep; 2022 Apr; 12(1):7023. PubMed ID: 35487959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Oscillating Sounds to Manipulate Sleep Spindles.
    Antony JW; Paller KA
    Sleep; 2017 Mar; 40(3):. PubMed ID: 28364415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographical frequency dynamics within EEG and MEG sleep spindles.
    Dehghani N; Cash SS; Halgren E
    Clin Neurophysiol; 2011 Feb; 122(2):229-35. PubMed ID: 20637689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal Analysis of Sleep Spindle Maturation from Childhood through Late Adolescence.
    Zhang ZY; Campbell IG; Dhayagude P; Espino HC; Feinberg I
    J Neurosci; 2021 May; 41(19):4253-4261. PubMed ID: 33785642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Spindle Variability.
    Gonzalez C; Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2022 Jun; 42(22):4517-4537. PubMed ID: 35477906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adolescent pattern of sleep spindle development revealed by HD-EEG.
    Bocskai G; Pótári A; Gombos F; Kovács I
    J Sleep Res; 2023 Apr; 32(2):e13618. PubMed ID: 35460107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep Spindles Promote the Restructuring of Memory Representations in Ventromedial Prefrontal Cortex through Enhanced Hippocampal-Cortical Functional Connectivity.
    Cowan E; Liu A; Henin S; Kothare S; Devinsky O; Davachi L
    J Neurosci; 2020 Feb; 40(9):1909-1919. PubMed ID: 31959699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density and frequency caudo-rostral gradients of sleep spindles recorded in the human cortex.
    Peter-Derex L; Comte JC; Mauguière F; Salin PA
    Sleep; 2012 Jan; 35(1):69-79. PubMed ID: 22215920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep spindle characteristics in adolescents.
    Goldstone A; Willoughby AR; de Zambotti M; Clark DB; Sullivan EV; Hasler BP; Franzen PL; Prouty DE; Colrain IM; Baker FC
    Clin Neurophysiol; 2019 Jun; 130(6):893-902. PubMed ID: 30981174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation.
    Plante DT; Goldstein MR; Cook JD; Smith R; Riedner BA; Rumble ME; Jelenchick L; Roth A; Tononi G; Benca RM; Peterson MJ
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1600-10. PubMed ID: 26195197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different maturational changes of fast and slow sleep spindles in the first four years of life.
    D'Atri A; Novelli L; Ferrara M; Bruni O; De Gennaro L
    Sleep Med; 2018 Feb; 42():73-82. PubMed ID: 29458750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold.
    Malerba P; Whitehurst L; Mednick SC
    Sleep; 2022 Aug; 45(8):. PubMed ID: 35666552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex.
    Anderer P; Klösch G; Gruber G; Trenker E; Pascual-Marqui RD; Zeitlhofer J; Barbanoj MJ; Rappelsberger P; Saletu B
    Neuroscience; 2001; 103(3):581-92. PubMed ID: 11274780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.
    Nishida M; Nakashima Y; Nishikawa T
    J Clin Neurophysiol; 2014 Oct; 31(5):402-8. PubMed ID: 25271676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep spindles in adolescence: a comparison across sleep restriction and sleep extension.
    Reynolds CM; Gradisar M; Coussens S; Short MA
    Sleep Med; 2018 Oct; 50():166-174. PubMed ID: 30056287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence.
    Hahn MA; Heib D; Schabus M; Hoedlmoser K; Helfrich RF
    Elife; 2020 Jun; 9():. PubMed ID: 32579108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
    Schabus M; Dang-Vu TT; Albouy G; Balteau E; Boly M; Carrier J; Darsaud A; Degueldre C; Desseilles M; Gais S; Phillips C; Rauchs G; Schnakers C; Sterpenich V; Vandewalle G; Luxen A; Maquet P
    Proc Natl Acad Sci U S A; 2007 Aug; 104(32):13164-9. PubMed ID: 17670944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical analysis of sleep spindle activity.
    Jobert M; Poiseau E; Jähnig P; Schulz H; Kubicki S
    Neuropsychobiology; 1992; 26(4):210-7. PubMed ID: 1299797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.