These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35487959)

  • 21. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation.
    Hassan U; Feld GB; Bergmann TO
    J Sleep Res; 2022 Dec; 31(6):e13733. PubMed ID: 36130730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal changes of slow wave activities before and after 14 Hz/12 Hz sleep spindles during stage 2 sleep.
    Ueda K; Nittono H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):183-4. PubMed ID: 11422833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical analysis of sleep spindle occurrences.
    Panas D; Malinowska U; Piotrowski T; Żygierewicz J; Suffczyński P
    PLoS One; 2013; 8(4):e59318. PubMed ID: 23560045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Developmental characteristics of frontal spindle and centro-parietal spindle].
    Nagata K; Shinomiya S; Takahashi K; Masumura T
    No To Hattatsu; 1996 Sep; 28(5):409-17. PubMed ID: 8831244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.
    Lustenberger C; Patel YA; Alagapan S; Page JM; Price B; Boyle MR; Fröhlich F
    Neuroimage; 2018 Apr; 169():57-68. PubMed ID: 29217404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topographic distribution of sleep spindles in young healthy subjects.
    Zeitlhofer J; Gruber G; Anderer P; Asenbaum S; Schimicek P; Saletu B
    J Sleep Res; 1997 Sep; 6(3):149-55. PubMed ID: 9358392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity.
    Ayoub A; Aumann D; Hörschelmann A; Kouchekmanesch A; Paul P; Born J; Marshall L
    Sleep; 2013 Jun; 36(6):905-11. PubMed ID: 23729934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sex and Pubertal Differences in the Maturational Trajectories of Sleep Spindles in the Transition from Childhood to Adolescence: A Population-Based Study.
    Ricci A; He F; Calhoun SL; Fang J; Vgontzas AN; Liao D; Bixler EO; Younes M; Fernandez-Mendoza J
    eNeuro; 2021; 8(4):. PubMed ID: 34168053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased oscillatory frequency of sleep spindles in combat-exposed veteran men with post-traumatic stress disorder.
    Wang C; Laxminarayan S; Ramakrishnan S; Dovzhenok A; Cashmere JD; Germain A; Reifman J
    Sleep; 2020 Oct; 43(10):. PubMed ID: 32239159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related differences and sexual dimorphism in canine sleep spindles.
    Iotchev IB; Kis A; Turcsán B; Tejeda Fernández de Lara DR; Reicher V; Kubinyi E
    Sci Rep; 2019 Jul; 9(1):10092. PubMed ID: 31300672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of sleep spindles in young children and adolescents.
    Shinomiya S; Nagata K; Takahashi K; Masumura T
    Clin Electroencephalogr; 1999 Apr; 30(2):39-43. PubMed ID: 10358781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation.
    Plante DT; Goldstein MR; Landsness EC; Peterson MJ; Riedner BA; Ferrarelli F; Wanger T; Guokas JJ; Tononi G; Benca RM
    J Affect Disord; 2013 Mar; 146(1):120-5. PubMed ID: 22974470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced sleep spindle activity in schizophrenia patients.
    Ferrarelli F; Huber R; Peterson MJ; Massimini M; Murphy M; Riedner BA; Watson A; Bria P; Tononi G
    Am J Psychiatry; 2007 Mar; 164(3):483-92. PubMed ID: 17329474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional MRI of sleep spindles and K-complexes.
    Caporro M; Haneef Z; Yeh HJ; Lenartowicz A; Buttinelli C; Parvizi J; Stern JM
    Clin Neurophysiol; 2012 Feb; 123(2):303-9. PubMed ID: 21775199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sleep spindles in humans: insights from intracranial EEG and unit recordings.
    Andrillon T; Nir Y; Staba RJ; Ferrarelli F; Cirelli C; Tononi G; Fried I
    J Neurosci; 2011 Dec; 31(49):17821-34. PubMed ID: 22159098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Form and Function of Sleep Spindles across the Lifespan.
    Clawson BC; Durkin J; Aton SJ
    Neural Plast; 2016; 2016():6936381. PubMed ID: 27190654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Individual Differences in Frequency and Topography of Slow and Fast Sleep Spindles.
    Cox R; Schapiro AC; Manoach DS; Stickgold R
    Front Hum Neurosci; 2017; 11():433. PubMed ID: 28928647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation.
    Lustenberger C; Boyle MR; Alagapan S; Mellin JM; Vaughn BV; Fröhlich F
    Curr Biol; 2016 Aug; 26(16):2127-36. PubMed ID: 27476602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.