These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35488065)
1. Bio-strengthening of cementitious composites from incinerated sugarcane filter cake by a calcifying bacterium Lysinibacillus sp. WH. Ditta ZM; Tanapongpisit N; Saenrang W; Fongkaew I; Chainakun P; Seemakram W; Boonlue S; Sata V; Ekprasert J Sci Rep; 2022 Apr; 12(1):7026. PubMed ID: 35488065 [TBL] [Abstract][Full Text] [Related]
2. Mechanical and self-healing properties of cement paste containing incinerated sugarcane filter cake and Lysinibacillus sp. WH bacteria. Ditta ZM; Laohana P; Tanapongpisit N; Saenrang W; Boonlue S; Sata V; Baalousha M; Chindaprasirt P; Ekprasert J Sci Rep; 2024 Mar; 14(1):6716. PubMed ID: 38509345 [TBL] [Abstract][Full Text] [Related]
3. Calcium hydroxide content and hydration degree of cement in cementitious composites containing calcium silicate slag. Bai R; Zhang J; Yan C; Liu S; Wang X; Yang Z Chemosphere; 2021 Oct; 280():130918. PubMed ID: 34162117 [TBL] [Abstract][Full Text] [Related]
4. Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO Shaheen N; Jalil A; Adnan F; Arsalan Khushnood R Microb Biotechnol; 2021 May; 14(3):1044-1059. PubMed ID: 33629805 [TBL] [Abstract][Full Text] [Related]
5. Improvement of microstructure of cementitious composites by microbially-induced calcite precipitation. Isar A; Sürmelioğlu S; Andiç-Çakir Ö; Hameş EE World J Microbiol Biotechnol; 2023 Jan; 39(3):76. PubMed ID: 36637547 [TBL] [Abstract][Full Text] [Related]
6. Bio-cement-modified construction materials and their performances. Yu X; He Z; Li X Environ Sci Pollut Res Int; 2022 Feb; 29(8):11219-11231. PubMed ID: 34528205 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Camilleri J; Sorrentino F; Damidot D Dent Mater; 2013 May; 29(5):580-93. PubMed ID: 23537569 [TBL] [Abstract][Full Text] [Related]
8. Experimental study of microorganism-induced calcium carbonate precipitation to solidify coal gangue as backfill materials: mechanical properties and microstructure. Wang Z; Zhang J; Li M; Guo S; Zhang J; Zhu G Environ Sci Pollut Res Int; 2022 Jun; 29(30):45774-45782. PubMed ID: 35150426 [TBL] [Abstract][Full Text] [Related]
9. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Liu W; Zhai D; Huan Z; Wu C; Chang J Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099 [TBL] [Abstract][Full Text] [Related]
10. Novel vaterite-containing tricalcium silicate bone cement by surface functionalization using 3-aminopropyltriethoxysilane: setting behavior, in vitro bioactivity and cytocompatibility. Shu Y; Qiu F; Zhang Y; Cao W; Wu Z; Nian S; Zhou N Biomed Mater; 2017 Oct; 12(6):065007. PubMed ID: 28784935 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties, durability and environmental assessment of low-carbon cementitious composite with natural fibrous wollastonite. Zhu D; Wen A; Tang A Environ Res; 2023 Oct; 234():116552. PubMed ID: 37406726 [TBL] [Abstract][Full Text] [Related]
13. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Camilleri J Dent Mater; 2011 Aug; 27(8):836-44. PubMed ID: 21600643 [TBL] [Abstract][Full Text] [Related]
14. The microstructure and surface morphology of radiopaque tricalcium silicate cement exposed to different curing conditions. Formosa LM; Mallia B; Bull T; Camilleri J Dent Mater; 2012 May; 28(5):584-95. PubMed ID: 22410112 [TBL] [Abstract][Full Text] [Related]
15. Kinetic model of a newly-isolated Lysinibacillus sp. strain YL and elastic properties of its biogenic CaCO Ekprasert J; Pongtharangkul T; Chainakun P; Fongkaew I; Khanthasombat K; Kamngam R; Boonsuan W; Ditta ZM; Seemakram W; Boonlue S Biotechnol J; 2022 Jan; 17(1):e2100124. PubMed ID: 34592060 [TBL] [Abstract][Full Text] [Related]
16. Industrial Waste Utilization of Carbon Dust in Sustainable Cementitious Composites Production. Irshidat MR; Al-Nuaimi N Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722107 [TBL] [Abstract][Full Text] [Related]
17. The impacts of biomineralization and oil contamination on the compressive strength of waste plastic-filled mortar. Rux K; Kane S; Espinal M; Ryan C; Phillips A; Heveran C Sci Rep; 2022 Dec; 12(1):21547. PubMed ID: 36513740 [TBL] [Abstract][Full Text] [Related]
18. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. Li M; Zhu X; Mukherjee A; Huang M; Achal V J Hazard Mater; 2017 May; 329():178-184. PubMed ID: 28135655 [TBL] [Abstract][Full Text] [Related]
19. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Grech L; Mallia B; Camilleri J Int Endod J; 2013 Jul; 46(7):632-41. PubMed ID: 23289940 [TBL] [Abstract][Full Text] [Related]
20. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. Qiao XC; Poon CS; Cheeseman CR J Hazard Mater; 2007 Jan; 139(2):238-43. PubMed ID: 16839680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]