BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35488144)

  • 1. Regional Differences in the Absolute Abundance of Transporters, Receptors and Tight Junction Molecules at the Blood-Arachnoid Barrier and Blood-Spinal Cord Barrier among Cervical, Thoracic and Lumbar Spines in Dogs.
    Takeuchi H; Suzuki M; Goto R; Tezuka K; Fuchs H; Ishiguro N; Terasaki T; Braun C; Uchida Y
    Pharm Res; 2022 Jul; 39(7):1393-1413. PubMed ID: 35488144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human blood-arachnoid barrier atlas of transporters, receptors, enzymes, and tight junction and marker proteins: Comparison with dog and pig in absolute abundance.
    Uchida Y; Takeuchi H; Goto R; Braun C; Fuchs H; Ishiguro N; Takao M; Tano M; Terasaki T
    J Neurochem; 2022 Apr; 161(2):187-208. PubMed ID: 35226354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abundant Expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT Transporters in Blood-Arachnoid Barrier of Pig and Polarized Localizations at CSF- and Blood-Facing Plasma Membranes.
    Uchida Y; Goto R; Takeuchi H; Ɓuczak M; Usui T; Tachikawa M; Terasaki T
    Drug Metab Dispos; 2020 Feb; 48(2):135-145. PubMed ID: 31771948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug Clearance from Cerebrospinal Fluid Mediated by Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8) at Arachnoid Membrane of Rats.
    Zhang Z; Tachikawa M; Uchida Y; Terasaki T
    Mol Pharm; 2018 Mar; 15(3):911-922. PubMed ID: 29436232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Absolute Protein Abundances of Transporters and Receptors among Blood-Brain Barriers at Different Cerebral Regions and the Blood-Spinal Cord Barrier in Humans and Rats.
    Uchida Y; Yagi Y; Takao M; Tano M; Umetsu M; Hirano S; Usui T; Tachikawa M; Terasaki T
    Mol Pharm; 2020 Jun; 17(6):2006-2020. PubMed ID: 32310660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular Mechanism Underlying the Function and Disintegration of the Central Nerve System Barrier Unraveled by Proteo-typing of Membrane Proteins].
    Terasaki T
    Brain Nerve; 2021 Jan; 73(1):59-78. PubMed ID: 33361514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inner Blood-Retinal Barrier Dominantly Expresses Breast Cancer Resistance Protein: Comparative Quantitative Targeted Absolute Proteomics Study of CNS Barriers in Pig.
    Zhang Z; Uchida Y; Hirano S; Ando D; Kubo Y; Auriola S; Akanuma SI; Hosoya KI; Urtti A; Terasaki T; Tachikawa M
    Mol Pharm; 2017 Nov; 14(11):3729-3738. PubMed ID: 28954515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Anion-Transporting Polypeptide 1a4 (Oatp1a4/Slco1a4) at the Blood-Arachnoid Barrier is the Major Pathway of Sulforhodamine-101 Clearance from Cerebrospinal Fluid of Rats.
    Yaguchi Y; Tachikawa M; Zhang Z; Terasaki T
    Mol Pharm; 2019 May; 16(5):2021-2027. PubMed ID: 30977661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative targeted absolute proteomics of rat blood-cerebrospinal fluid barrier transporters: comparison with a human specimen.
    Uchida Y; Zhang Z; Tachikawa M; Terasaki T
    J Neurochem; 2015 Sep; 134(6):1104-15. PubMed ID: 25951748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis.
    Uchida Y; Sumiya T; Tachikawa M; Yamakawa T; Murata S; Yagi Y; Sato K; Stephan A; Ito K; Ohtsuki S; Couraud PO; Suzuki T; Terasaki T
    Mol Neurobiol; 2019 Mar; 56(3):2039-2056. PubMed ID: 29984400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier.
    Yasuda K; Cline C; Vogel P; Onciu M; Fatima S; Sorrentino BP; Thirumaran RK; Ekins S; Urade Y; Fujimori K; Schuetz EG
    Drug Metab Dispos; 2013 Apr; 41(4):923-31. PubMed ID: 23298861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Targeted Absolute Proteomics for Better Characterization of an In Vitro Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells.
    Dehouck MP; Tachikawa M; Hoshi Y; Omori K; Maurage CA; Strecker G; Dehouck L; Boucau MC; Uchida Y; Gosselet F; Terasaki T; Karamanos Y
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery.
    Huttunen KM; Terasaki T; Urtti A; Montaser AB; Uchida Y
    Pharm Res; 2022 Jul; 39(7):1363-1392. PubMed ID: 35257288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ROCK inhibitor Y-27632 ameliorates blood-spinal cord barrier disruption by reducing tight junction protein degradation via the MYPT1-MLC2 pathway after spinal cord injury in rats.
    Chang S; Cao Y
    Brain Res; 2021 Dec; 1773():147684. PubMed ID: 34634287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological hemodynamic changes and leukocyte transmigration disrupt the blood-spinal cord barrier after spinal cord injury.
    Zhou R; Li J; Chen Z; Wang R; Shen Y; Zhang R; Zhou F; Zhang Y
    J Neuroinflammation; 2023 May; 20(1):118. PubMed ID: 37210532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in transporter and receptor protein expression levels at the rat blood-brain barrier based on quantitative targeted absolute proteomics.
    Omori K; Tachikawa M; Hirose S; Taii A; Akanuma SI; Hosoya KI; Terasaki T
    Drug Metab Pharmacokinet; 2020 Feb; 35(1):117-123. PubMed ID: 31974045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS.
    Waters S; Swanson MEV; Dieriks BV; Zhang YB; Grimsey NL; Murray HC; Turner C; Waldvogel HJ; Faull RLM; An J; Bowser R; Curtis MA; Dragunow M; Scotter E
    Acta Neuropathol Commun; 2021 Aug; 9(1):144. PubMed ID: 34446086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability.
    Winkler EA; Sengillo JD; Bell RD; Wang J; Zlokovic BV
    J Cereb Blood Flow Metab; 2012 Oct; 32(10):1841-52. PubMed ID: 22850407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6J mice.
    Uchida Y; Tachikawa M; Obuchi W; Hoshi Y; Tomioka Y; Ohtsuki S; Terasaki T
    Fluids Barriers CNS; 2013 Jun; 10(1):21. PubMed ID: 23758935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model.
    Ohtsuki S; Ikeda C; Uchida Y; Sakamoto Y; Miller F; Glacial F; Decleves X; Scherrmann JM; Couraud PO; Kubo Y; Tachikawa M; Terasaki T
    Mol Pharm; 2013 Jan; 10(1):289-96. PubMed ID: 23137377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.