These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35488186)

  • 1. CyberLimb: a novel robotic prosthesis concept with shared and intuitive control.
    Seppich N; Tacca N; Chao KY; Akim M; Hidalgo-Carvajal D; Pozo Fortunić E; Tödtheide A; Kühn J; Haddadin S
    J Neuroeng Rehabil; 2022 Apr; 19(1):41. PubMed ID: 35488186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of the Cybathlon 2020 experience for a prosthetic hand user: a case study on the Hannes system.
    Caserta G; Boccardo N; Freddolini M; Barresi G; Marinelli A; Canepa M; Stedman S; Lombardi L; Laffranchi M; Gruppioni E; De Michieli L
    J Neuroeng Rehabil; 2022 Jul; 19(1):68. PubMed ID: 35787721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis.
    Flynn LL; Geeroms J; van der Hoeven T; Vanderborght B; Lefeber D
    J Neuroeng Rehabil; 2018 Jan; 15(1):3. PubMed ID: 29298695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SoftHand Pro platform: a flexible prosthesis with a user-centered approach.
    Capsi-Morales P; Piazza C; Grioli G; Bicchi A; Catalano MG
    J Neuroeng Rehabil; 2023 Feb; 20(1):20. PubMed ID: 36755249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey on the influence of CYBATHLON on the development and acceptance of advanced assistive technologies.
    Meyer JT; Weber S; Jäger L; Sigrist R; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2022 Apr; 19(1):38. PubMed ID: 35366930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SoftHand at the CYBATHLON: a user's experience.
    Godfrey SB; Rossi M; Piazza C; Catalano MG; Bianchi M; Grioli G; Zhao KD; Bicchi A
    J Neuroeng Rehabil; 2017 Nov; 14(1):124. PubMed ID: 29187203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive motivation increased home use and improved prosthesis self-perception after Cybathlon 2020 for neuromusculoskeletal prosthesis user.
    Earley EJ; Zbinden J; Munoz-Novoa M; Mastinu E; Smiles A; Ortiz-Catalan M
    J Neuroeng Rehabil; 2022 May; 19(1):47. PubMed ID: 35578249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 10. The SmartHand transradial prosthesis.
    Cipriani C; Controzzi M; Carrozza MC
    J Neuroeng Rehabil; 2011 May; 8():29. PubMed ID: 21600048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.
    Statthaler K; Schwarz A; Steyrl D; Kobler R; Höller MK; Brandstetter J; Hehenberger L; Bigga M; Müller-Putz G
    J Neuroeng Rehabil; 2017 Dec; 14(1):129. PubMed ID: 29282131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cybathlon promotes the development of assistive technology for people with physical disabilities.
    Riener R
    J Neuroeng Rehabil; 2016 May; 13(1):49. PubMed ID: 27246601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advancements in prosthetic hand technology.
    Saikia A; Mazumdar S; Sahai N; Paul S; Bhatia D; Verma S; Rohilla PK
    J Med Eng Technol; 2016 Jul; 40(5):255-64. PubMed ID: 27098838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of User-Prosthesis-Interfaces for sEMG-Based Multifunctional Prosthetic Hands.
    Fajardo J; Maldonado G; Cardona D; Ferman V; Rohmer E
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).
    Bengtson SH; Bak T; Andreasen Struijk LNS; Moeslund TB
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):731-745. PubMed ID: 31268368
    [No Abstract]   [Full Text] [Related]  

  • 19. Functional assessment of current upper limb prostheses: An integrated clinical and technological perspective.
    Capsi-Morales P; Piazza C; Sjoberg L; Catalano MG; Grioli G; Bicchi A; Hermansson LM
    PLoS One; 2023; 18(8):e0289978. PubMed ID: 37585427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Robotics Enables Neuroprosthetic Hand Design.
    Gu G; Zhang N; Chen C; Xu H; Zhu X
    ACS Nano; 2023 Jun; 17(11):9661-9672. PubMed ID: 37196348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.