These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35488791)
1. Associative cued asynchronous BCI induces cortical plasticity in stroke patients. Niazi IK; Navid MS; Rashid U; Amjad I; Olsen S; Haavik H; Alder G; Kumari N; Signal N; Taylor D; Farina D; Jochumsen M Ann Clin Transl Neurol; 2022 May; 9(5):722-733. PubMed ID: 35488791 [TBL] [Abstract][Full Text] [Related]
2. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Mrachacz-Kersting N; Voigt M; Stevenson AJT; Aliakbaryhosseinabadi S; Jiang N; Dremstrup K; Farina D Brain Res; 2017 Nov; 1674():91-100. PubMed ID: 28859916 [TBL] [Abstract][Full Text] [Related]
3. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Jochumsen M; Cremoux S; Robinault L; Lauber J; Arceo JC; Navid MS; Nedergaard RW; Rashid U; Haavik H; Niazi IK Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400325 [TBL] [Abstract][Full Text] [Related]
4. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. Niazi IK; Mrachacz-Kersting N; Jiang N; Dremstrup K; Farina D IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):595-604. PubMed ID: 22547461 [TBL] [Abstract][Full Text] [Related]
5. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. Xu R; Jiang N; Mrachacz-Kersting N; Lin C; Asín Prieto G; Moreno JC; Pons JL; Dremstrup K; Farina D IEEE Trans Biomed Eng; 2014 Jul; 61(7):2092-101. PubMed ID: 24686231 [TBL] [Abstract][Full Text] [Related]
6. Self-Paced Online vs. Cue-Based Offline Brain-Computer Interfaces for Inducing Neural Plasticity. Jochumsen M; Navid MS; Nedergaard RW; Signal N; Rashid U; Hassan A; Haavik H; Taylor D; Niazi IK Brain Sci; 2019 Jun; 9(6):. PubMed ID: 31159454 [No Abstract] [Full Text] [Related]
7. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003 [TBL] [Abstract][Full Text] [Related]
8. Brain-computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients. Kim MG; Lim H; Lee HS; Han IJ; Ku J; Kang YJ J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35675795 [No Abstract] [Full Text] [Related]
9. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation. Wei P; He W; Zhou Y; Wang L IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the Efficacy of a Real-Time and Offline Associative Brain-Computer-Interface. Mrachacz-Kersting N; Aliakbaryhosseinabadi S Front Neurosci; 2018; 12():455. PubMed ID: 30050400 [TBL] [Abstract][Full Text] [Related]
11. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. Mrachacz-Kersting N; Jiang N; Stevenson AJ; Niazi IK; Kostic V; Pavlovic A; Radovanovic S; Djuric-Jovicic M; Agosta F; Dremstrup K; Farina D J Neurophysiol; 2016 Mar; 115(3):1410-21. PubMed ID: 26719088 [TBL] [Abstract][Full Text] [Related]
12. Attentional state-synchronous peripheral electrical stimulation during action observation induced distinct modulation of corticospinal plasticity after stroke. Jeong CH; Lim H; Lee J; Lee HS; Ku J; Kang YJ Front Neurosci; 2024; 18():1373589. PubMed ID: 38606309 [TBL] [Abstract][Full Text] [Related]
13. Effectiveness of motor and prefrontal cortical areas for brain-controlled functional electrical stimulation neuromodulation. Fadli RA; Yamanouchi Y; Jovanovic LI; Popovic MR; Marquez-Chin C; Nomura T; Milosevic M J Neural Eng; 2023 Sep; 20(5):. PubMed ID: 37714143 [No Abstract] [Full Text] [Related]
14. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm. Takahashi K; Kato K; Mizuguchi N; Ushiba J J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845 [TBL] [Abstract][Full Text] [Related]
15. Differential corticomotor mechanisms of ankle motor control in post stroke individuals with and without motor evoked potentials. Lim H; Madhavan S Brain Res; 2020 Jul; 1739():146833. PubMed ID: 32298662 [TBL] [Abstract][Full Text] [Related]
16. Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients. Li C; Jia T; Xu Q; Ji L; Pan Y J Healthc Eng; 2019; 2019():3817124. PubMed ID: 31559004 [TBL] [Abstract][Full Text] [Related]
17. Paired Associative Stimulation Delivered by Pairing Movement-Related Cortical Potentials With Peripheral Electrical Stimulation: An Investigation of the Duration of Neuromodulatory Effects. Olsen S; Signal N; Niazi IK; Christensen T; Jochumsen M; Taylor D Neuromodulation; 2018 Jun; 21(4):362-367. PubMed ID: 28580648 [TBL] [Abstract][Full Text] [Related]
19. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI. Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711 [No Abstract] [Full Text] [Related]
20. Adaptive learning in the detection of Movement Related Cortical Potentials improves usability of associative Brain-Computer Interfaces. Colamarino E; Muceli S; Ibanez J; Mrachacz-Kersting N; Mattia D; Cincotti F; Farina D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3079-3082. PubMed ID: 31946538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]