These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35488890)

  • 61. Diastereoselective formation of host-guest complexes between a series of phosphate-bridged cavitands and alkyl- and arylammonium ions studied by liquid secondary-ion mass spectrometry.
    Irico A; Vincenti M; Dalcanale E
    Chemistry; 2001 May; 7(9):2034-42. PubMed ID: 11405483
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Templated assembly of water-soluble nano-capsules: inter-phase sequestration, storage, and separation of hydrocarbon gases.
    Gibb CL; Gibb BC
    J Am Chem Soc; 2006 Dec; 128(51):16498-9. PubMed ID: 17177388
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Self-assembly cavitand precisely recognizing hexafluorosilicate: a concerted action of two coordination and twelve CH···F bonds.
    Degtyarenko AS; Rusanov EB; Bauzá A; Frontera A; Krautscheid H; Chernega AN; Mokhir AA; Domasevitch KV
    Chem Commun (Camb); 2013 Oct; 49(79):9018-20. PubMed ID: 23970336
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A light controlled cavitand wall regulates guest binding.
    Berryman OB; Sather AC; Rebek J
    Chem Commun (Camb); 2011 Jan; 47(2):656-8. PubMed ID: 21116523
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Combining Excellent Selectivity with Broad Target Scope: Biosensing with Arrayed Deep Cavitand Hosts.
    Zhong W; Hooley RJ
    Acc Chem Res; 2022 Apr; 55(7):1035-1046. PubMed ID: 35302733
    [TBL] [Abstract][Full Text] [Related]  

  • 67. ITC and NMR Analysis of the Encapsulation of Fatty Acids within a Water-Soluble Cavitand and its Dimeric Capsule.
    Wang K; Sokkalingam P; Gibb BC
    Supramol Chem; 2016; 28(1-2):84-90. PubMed ID: 26997853
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cavitands as Containers for α,ω-Dienes and Chaperones for Olefin Metathesis.
    Wu NW; Petsalakis ID; Theodorakopoulos G; Yu Y; Rebek J
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15091-15095. PubMed ID: 30246478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comprehensive Characterization of the Self-Folding Cavitand Dynamics.
    López-Coll R; Álvarez-Yebra R; Feixas F; Lledó A
    Chemistry; 2021 Jul; 27(39):10099-10106. PubMed ID: 33881199
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anion binding by a tetradipicolylamine-substituted resorcinarene cavitand.
    Gardner JS; Conda-Sheridan M; Smith DN; Harrison RG; Lamb JD
    Inorg Chem; 2005 Jun; 44(12):4295-300. PubMed ID: 15934759
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Complementary Binding in Urea-Based Self-Folding Cavitands.
    Lledó A
    Org Lett; 2015 Aug; 17(15):3770-3. PubMed ID: 26181724
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dendronized supramolecular nanocapsules: pH independent, water-soluble, deep-cavity cavitands assemble via the hydrophobic effect.
    Giles MD; Liu S; Emanuel RL; Gibb BC; Grayson SM
    J Am Chem Soc; 2008 Nov; 130(44):14430-1. PubMed ID: 18847205
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The templation effect as a driving force for the self-assembly of hydrogen-bonded peptidic capsules in competitive media.
    Grajda M; Lewińska MJ; Szumna A
    Org Biomol Chem; 2017 Oct; 15(40):8513-8517. PubMed ID: 28862280
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition.
    Li N; Yang F; Stock HA; Dearden DV; Lamb JD; Harrison RG
    Org Biomol Chem; 2012 Sep; 10(36):7392-401. PubMed ID: 22865201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of number and position of P=O/P=S bridging units on cavitand selectivity toward methyl ammonium salts.
    Menozzi D; Pinalli R; Massera C; Maffei F; Dalcanale E
    Molecules; 2015 Mar; 20(3):4460-72. PubMed ID: 25764488
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Detection of reactive tetrahedral intermediates in a deep cavitand with an introverted functionality.
    Hooley RJ; Iwasawa T; Rebek J
    J Am Chem Soc; 2007 Dec; 129(49):15330-9. PubMed ID: 18004856
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Doubly Cavitand-Capped Porphyrin Capsule by Hydrogen Bonds.
    Kishimoto K; Nakamura M; Kobayashi K
    Chemistry; 2016 Feb; 22(8):2629-33. PubMed ID: 26728330
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A deep cavitand with a fluorescent wall functions as an ion sensor.
    Berryman OB; Sather AC; Rebek J
    Org Lett; 2011 Oct; 13(19):5232-5. PubMed ID: 21913699
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mixed Explicit-Implicit Solvation Approach for Modeling of Alkane Complexation in Water-Soluble Self-Assembled Capsules.
    Daver H; Algarra AG; Rebek J; Harvey JN; Himo F
    J Am Chem Soc; 2018 Oct; 140(39):12527-12537. PubMed ID: 30185035
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A cavitand with a fluorous rim acts as an amine receptor.
    Hooley RJ; Restorp P; Rebek J
    Chem Commun (Camb); 2008 Dec; (47):6291-3. PubMed ID: 19048132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.