BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35489058)

  • 1. NASP maintains histone H3-H4 homeostasis through two distinct H3 binding modes.
    Bao H; Carraro M; Flury V; Liu Y; Luo M; Chen L; Groth A; Huang H
    Nucleic Acids Res; 2022 May; 50(9):5349-5368. PubMed ID: 35489058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones.
    Liu CP; Jin W; Hu J; Wang M; Chen J; Li G; Xu RM
    Genes Dev; 2021 Dec; 35(23-24):1610-1624. PubMed ID: 34819355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The histone chaperone NASP maintains H3-H4 reservoirs in the early Drosophila embryo.
    Tirgar R; Davies JP; Plate L; Nordman JT
    PLoS Genet; 2023 Mar; 19(3):e1010682. PubMed ID: 36930688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specific role for importin-5 and NASP in the import and nuclear hand-off of monomeric H3.
    Pardal AJ; Bowman AJ
    Elife; 2022 Sep; 11():. PubMed ID: 36066346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sNASP and ASF1A function through both competitive and compatible modes of histone binding.
    Bowman A; Koide A; Goodman JS; Colling ME; Zinne D; Koide S; Ladurner AG
    Nucleic Acids Res; 2017 Jan; 45(2):643-656. PubMed ID: 28123037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The H3 chaperone function of NASP is conserved in Arabidopsis.
    Maksimov V; Nakamura M; Wildhaber T; Nanni P; Ramström M; Bergquist J; Hennig L
    Plant J; 2016 Nov; 88(3):425-436. PubMed ID: 27402088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain.
    Cook AJ; Gurard-Levin ZA; Vassias I; Almouzni G
    Mol Cell; 2011 Dec; 44(6):918-27. PubMed ID: 22195965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for histone H3 recognition by NASP in Arabidopsis.
    Liu Y; Chen L; Wang N; Wu B; Bao H; Huang H
    J Integr Plant Biol; 2022 Dec; 64(12):2309-2313. PubMed ID: 35587028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.
    Zhang M; Liu H; Gao Y; Zhu Z; Chen Z; Zheng P; Xue L; Li J; Teng M; Niu L
    Structure; 2016 Oct; 24(10):1810-1820. PubMed ID: 27618665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the nuclear import of histones H3.1 and H4 as monomers.
    Apta-Smith MJ; Hernandez-Fernaud JR; Bowman AJ
    EMBO J; 2018 Oct; 37(19):. PubMed ID: 30177573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Analysis of Hif1 Histone Chaperone in
    Dannah NS; Nabeel-Shah S; Kurat CF; Sabatinos SA; Fillingham J
    G3 (Bethesda); 2018 May; 8(6):1993-2006. PubMed ID: 29661843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanded binding specificity of the human histone chaperone NASP.
    Wang H; Walsh ST; Parthun MR
    Nucleic Acids Res; 2008 Oct; 36(18):5763-72. PubMed ID: 18782834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome formation activity of human somatic nuclear autoantigenic sperm protein (sNASP).
    Osakabe A; Tachiwana H; Matsunaga T; Shiga T; Nozawa RS; Obuse C; Kurumizaka H
    J Biol Chem; 2010 Apr; 285(16):11913-21. PubMed ID: 20167597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3-H4 tetramers and Asf1-H3-H4 complexes.
    Hammond CM; Sundaramoorthy R; Larance M; Lamond A; Stevens MA; El-Mkami H; Norman DG; Owen-Hughes T
    Nucleic Acids Res; 2016 Jul; 44(13):6157-72. PubMed ID: 27036862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network.
    Carraro M; Hendriks IA; Hammond CM; Solis-Mezarino V; Völker-Albert M; Elsborg JD; Weisser MB; Spanos C; Montoya G; Rappsilber J; Imhof A; Nielsen ML; Groth A
    Mol Cell; 2023 Apr; 83(7):1075-1092.e9. PubMed ID: 36868228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats.
    Bowman A; Lercher L; Singh HR; Zinne D; Timinszky G; Carlomagno T; Ladurner AG
    Nucleic Acids Res; 2016 Apr; 44(7):3105-17. PubMed ID: 26673727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms.
    Wang H; Ge Z; Walsh ST; Parthun MR
    Nucleic Acids Res; 2012 Jan; 40(2):660-9. PubMed ID: 21965532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106.
    Su D; Hu Q; Li Q; Thompson JR; Cui G; Fazly A; Davies BA; Botuyan MV; Zhang Z; Mer G
    Nature; 2012 Feb; 483(7387):104-7. PubMed ID: 22307274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human testis-specific Y-encoded protein-like protein 5 is a histone H3/H4-specific chaperone that facilitates histone deposition in vitro.
    Dalui S; Dasgupta A; Adhikari S; Das C; Roy S
    J Biol Chem; 2022 Aug; 298(8):102200. PubMed ID: 35772497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of IMPORTIN-4 bound to the H3-H4-ASF1 histone-histone chaperone complex.
    Bernardes NE; Fung HYJ; Li Y; Chen Z; Chook YM
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2207177119. PubMed ID: 36103578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.