These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35489190)

  • 1. Novel study on catalytic pyrolysis of chitin biomass using waste cathode material recovered from spent Li-ion battery.
    Chen L; Shen Y
    J Environ Manage; 2022 Aug; 315():115133. PubMed ID: 35489190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spent lithium-ion battery materials recycling for catalytic pyrolysis or gasification of biomass.
    Chen L; Wang P; Shen Y; Guo M
    Bioresour Technol; 2021 Mar; 323():124584. PubMed ID: 33373799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of cellulose with biochar modified by Ni-Co-Mn cathode material recovered from spent lithium-ion battery.
    Shen Y; Chen L
    Chemosphere; 2022 Oct; 305():135430. PubMed ID: 35772519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling spent ternary lithium-ion batteries for modification of dolomite used in catalytic biomass pyrolysis - A preliminary study by thermogravimetric and pyrolysis-gas chromatography/mass spectrometry analysis.
    Wang P; Chen L; Shen Y
    Bioresour Technol; 2021 Oct; 337():125476. PubMed ID: 34320756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal phase and nanoscale size regulation utilizing the in-situ catalytic pyrolysis of bamboo sawdust in the recycling of spent lithium batteries.
    Chen Q; Zhang X; Cheng R; Shi H; Pei Y; Yang J; Zhao Q; Zhao X; Wu F
    Waste Manag; 2024 Jun; 182():186-196. PubMed ID: 38670002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis.
    Yu S; Xiong J; Wu D; Lü X; Yao Z; Xu S; Tang J
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40205-40209. PubMed ID: 32661975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defluorination and directional conversion to light fuel by lithium synergistic vacuum catalytic co-pyrolysis for electrolyte and polyvinylidene fluoride in spent lithium-ion batteries.
    Zhang Y; Zhang X; Zhu P; Li W; Zhang L
    J Hazard Mater; 2023 Oct; 460():132445. PubMed ID: 37703732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave Pyrolysis of Macadamia Shells for Efficiently Recycling Lithium from Spent Lithium-ion Batteries.
    Zhao Y; Liu B; Zhang L; Guo S
    J Hazard Mater; 2020 Sep; 396():122740. PubMed ID: 32388185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balancing the Components of Biomass and the Reactivity of Pyrolysis Gas: Biomass-Assisted Recycling of Spent LiCoO
    Zhou F; Wang H; Wang S; Zhao J; Qu X; Wang D; Cai Y; Zheng Z; Wang D; Yin H
    Environ Sci Technol; 2024 Jan; 58(4):2102-2111. PubMed ID: 38238255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Value-added organonitrogen chemicals evolution from the pyrolysis of chitin and chitosan.
    Liu C; Zhang H; Xiao R; Wu S
    Carbohydr Polym; 2017 Jan; 156():118-124. PubMed ID: 27842805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics.
    Fan H; Gu J; Wang Y; Yuan H; Chen Y; Luo B
    Waste Manag; 2021 Feb; 121():255-264. PubMed ID: 33388648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics study and recycling strategies in different stages of full-component pyrolysis of spent LiNi
    Tao R; Xing P; Li H; Cun Z; Wang C; Ma S; Sun Z
    Waste Manag; 2023 Jan; 155():8-18. PubMed ID: 36335774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis and gasification of typical components in wastes with macro-TGA.
    Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q
    Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis of chitin biomass: TG-MS analysis and solid char residue characterization.
    Qiao Y; Chen S; Liu Y; Sun H; Jia S; Shi J; Pedersen CM; Wang Y; Hou X
    Carbohydr Polym; 2015 Nov; 133():163-70. PubMed ID: 26344268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere.
    Zaini IN; García López C; Pretz T; Yang W; Jönsson PG
    Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation and modelling of the pyrolysis kinetics of industrial biomass wastes.
    Bieniek A; Reinmöller M; Küster F; Gräbner M; Jerzak W; Magdziarz A
    J Environ Manage; 2022 Oct; 319():115707. PubMed ID: 35839650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.
    Gonçalves MC; Garcia EM; Taroco HA; Gorgulho HF; Melo JO; Silva RR; Souza AG
    Waste Manag; 2015 Jun; 40():144-50. PubMed ID: 25728092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.