These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35489190)

  • 21. Efficient recovery of valuable metals from cathode materials of spent LiCoO
    Lai Y; Zhu X; Li J; Peng Q; Hu S; Xia A; Huang Y; Liao Q; Zhu X
    Waste Manag; 2022 Jul; 148():12-21. PubMed ID: 35644122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis.
    Chihobo CH; Chowdhury A; Kuipa PK; Simbi DJ
    Waste Manag Res; 2016 Dec; 34(12):1258-1267. PubMed ID: 27729402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyrolysis of anaerobic digested residues in the presence of catalyst-sorbent bifunctional material: Pyrolysis characteristics, kinetics and evolved gas analysis.
    Vuppaladadiyam AK; Vuppaladadiyam VSS; Antunes E; Baig Z; Rehman S; Murugavelh S; Leu SY; Sarmah AK
    Bioresour Technol; 2022 May; 351():127022. PubMed ID: 35306136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling.
    Hai A; Bharath G; Daud M; Rambabu K; Ali I; Hasan SW; Show P; Banat F
    Chemosphere; 2021 Nov; 283():131162. PubMed ID: 34157626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on thermochemical characteristics properties and pyrolysis kinetics of the mixtures of waste corn stalk and pyrolusite.
    Du J; Gao L; Yang Y; Chen G; Guo S; Omran M; Chen J; Ruan R
    Bioresour Technol; 2021 Mar; 324():124660. PubMed ID: 33434872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic modeling study on the combustion treatment of cathode from spent lithium-ion batteries.
    Yao Z; Yu S; Su W; Wu D; Wu W; Tang J
    Waste Manag Res; 2020 Jan; 38(1):100-106. PubMed ID: 31603400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries.
    Liu P; Mi X; Zhao H; Cai L; Luo F; Liu C; Wang Z; Deng C; He J; Zeng G; Luo X
    Waste Manag; 2023 Sep; 169():342-350. PubMed ID: 37517305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.
    Wu K; Liu J; Wu Y; Chen Y; Li Q; Xiao X; Yang M
    Bioresour Technol; 2014 Jul; 163():18-25. PubMed ID: 24768943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analyzing the kinetics of waste plant biomass pyrolysis via thermogravimetry modeling and semi-statistical methods.
    Postawa K; Fałtynowicz H; Szczygieł J; Beran E; Kułażyński M
    Bioresour Technol; 2022 Jan; 344(Pt B):126181. PubMed ID: 34755652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A "Wastes-Treat-Wastes" Technology: Role and Potential of Spent Fluid Catalytic Cracking Catalysts Assisted Pyrolysis of Discarded Car Tires.
    Zhao B; Wang C; Bian H
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of product selectivity and kinetics of poplar sawdust catalytic pyrolysis over bi-metallic Iron-Nickel/ZSM-5 catalyst.
    Li Y; Yellezuome D; Liu R; Cai J; Gao Y
    Bioresour Technol; 2022 Apr; 349():126838. PubMed ID: 35151847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influencing mechanism of zinc mineral contamination on pyrolysis kinetic and product characteristics of corn biomass.
    Li C; Ji G; Qu Y; Irfan M; Zhu K; Wang X; Li A
    J Environ Manage; 2021 Mar; 281():111837. PubMed ID: 33418387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ultrasonic treatment on the pyrolysis characteristics and kinetics of waste activated sludge.
    Jia H; Liu B; Zhang X; Chen J; Ren W
    Environ Res; 2020 Apr; 183():109250. PubMed ID: 32088608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition.
    Hu M; Cui B; Xiao B; Luo S; Guo D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis of mustard oil residue: A kinetic and thermodynamic study.
    Kumar Singh R; Patil T; Pandey D; Sawarkar AN
    Bioresour Technol; 2021 Nov; 339():125631. PubMed ID: 34332178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO
    Li J; Lai Y; Zhu X; Liao Q; Xia A; Huang Y; Zhu X
    J Hazard Mater; 2020 Nov; 398():122955. PubMed ID: 32474320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.