BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35489222)

  • 1. Discovery of indirubin-3'-aminooxy-acetamide derivatives as potent and selective FLT3/D835Y mutant kinase inhibitors for acute myeloid leukemia.
    Lee JH; Shin JE; Kim W; Jeong P; Kim MJ; Oh SJ; Lee HJ; Park HW; Han SY; Kim YC
    Eur J Med Chem; 2022 Jul; 237():114356. PubMed ID: 35489222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of orally active indirubin-3'-oxime derivatives as potent type 1 FLT3 inhibitors for acute myeloid leukemia.
    Jeong P; Moon Y; Lee JH; Lee SD; Park J; Lee J; Kim J; Lee HJ; Kim NY; Choi J; Heo JD; Shin JE; Park HW; Kim YG; Han SY; Kim YC
    Eur J Med Chem; 2020 Jun; 195():112205. PubMed ID: 32272419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of benzimidazole-indazole derivatives as potent FLT3-tyrosine kinase domain mutant kinase inhibitors for acute myeloid leukemia.
    Ko B; Jang Y; Kim MH; Lam TT; Seo HK; Jeong P; Choi M; Kang KW; Lee SD; Park JH; Kim M; Han SY; Kim YC
    Eur J Med Chem; 2023 Dec; 262():115860. PubMed ID: 37866334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with
    Yamaura T; Nakatani T; Uda K; Ogura H; Shin W; Kurokawa N; Saito K; Fujikawa N; Date T; Takasaki M; Terada D; Hirai A; Akashi A; Chen F; Adachi Y; Ishikawa Y; Hayakawa F; Hagiwara S; Naoe T; Kiyoi H
    Blood; 2018 Jan; 131(4):426-438. PubMed ID: 29187377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual inhibitor overcomes drug-resistant FLT3-ITD acute myeloid leukemia.
    Wang P; Xiao X; Zhang Y; Zhang B; Li D; Liu M; Xie X; Liu C; Liu P; Ren R
    J Hematol Oncol; 2021 Jul; 14(1):105. PubMed ID: 34217323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino alkynylisoquinoline and alkynylnaphthyridine compounds potently inhibit acute myeloid leukemia proliferation in mice.
    Naganna N; Opoku-Temeng C; Choi EY; Larocque E; Chang ET; Carter-Cooper BA; Wang M; Torregrosa-Allen SE; Elzey BD; Lapidus RG; Sintim HO
    EBioMedicine; 2019 Feb; 40():231-239. PubMed ID: 30686755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Based Optimization of Pyrazinamide-Containing Macrocyclic Derivatives as Fms-like Tyrosine Kinase 3 (FLT3) Inhibitors to Overcome Clinical Mutations.
    Zheng X; Chen Z; Guo M; Liang H; Song X; Liu Y; Liao Z; Zhang Y; Guo J; Zhou Y; Zhang ZM; Tu Z; Zhang Y; Chen Y; Zhang Z; Lu X
    ACS Pharmacol Transl Sci; 2024 May; 7(5):1485-1506. PubMed ID: 38751627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation.
    Marhäll A; Heidel F; Fischer T; Rönnstrand L
    Ann Hematol; 2018 May; 97(5):773-780. PubMed ID: 29372308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns.
    Moore AS; Faisal A; Gonzalez de Castro D; Bavetsias V; Sun C; Atrash B; Valenti M; de Haven Brandon A; Avery S; Mair D; Mirabella F; Swansbury J; Pearson AD; Workman P; Blagg J; Raynaud FI; Eccles SA; Linardopoulos S
    Leukemia; 2012 Jul; 26(7):1462-70. PubMed ID: 22354205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of imidazo[1,2-a]pyridine-thiophene derivatives as FLT3 and FLT3 mutants inhibitors for acute myeloid leukemia through structure-based optimization of an NEK2 inhibitor.
    Zhang L; Lakkaniga NR; Bharate JB; Mcconnell N; Wang X; Kharbanda A; Leung YK; Frett B; Shah NP; Li HY
    Eur J Med Chem; 2021 Dec; 225():113776. PubMed ID: 34479037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and development of extreme selective inhibitors of the ITD and D835Y mutant FLT3 kinases.
    Baska F; Sipos A; Őrfi Z; Nemes Z; Dobos J; Szántai-Kis C; Szabó E; Szénási G; Dézsi L; Hamar P; Cserepes MT; Tóvári J; Garamvölgyi R; Krekó M; Őrfi L
    Eur J Med Chem; 2019 Dec; 184():111710. PubMed ID: 31614258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of FLT3-ITD Kinase in Acute Myeloid Leukemia by New Imidazo[1,2-
    Břehová P; Řezníčková E; Škach K; Jorda R; Dejmek M; Vojáčková V; Šála M; Kovalová M; Dračínský M; Dolníková A; Strmeň T; Kinnertová M; Chalupský K; Dvořáková A; Gucký T; Mertlíková Kaiserová H; Klener P; Nencka R; Kryštof V
    J Med Chem; 2023 Aug; 66(16):11133-11157. PubMed ID: 37535845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines.
    Dayal N; Opoku-Temeng C; Hernandez DE; Sooreshjani MA; Carter-Cooper BA; Lapidus RG; Sintim HO
    Future Med Chem; 2018 Apr; 10(7):823-835. PubMed ID: 29437468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis and biological evaluation of 2-aminopyrimidine derivatives as potent FLT3 inhibitors.
    Lian X; Gao Y; Li X; Wang P; Tong L; Li J; Zhou Y; Liu T
    Bioorg Med Chem Lett; 2023 Nov; 96():129519. PubMed ID: 37838343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia.
    Baker SD; Zimmerman EI; Wang YD; Orwick S; Zatechka DS; Buaboonnam J; Neale GA; Olsen SR; Enemark EJ; Shurtleff S; Rubnitz JE; Mullighan CG; Inaba H
    Clin Cancer Res; 2013 Oct; 19(20):5758-68. PubMed ID: 23969938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia.
    Zhang W; Konopleva M; Shi YX; McQueen T; Harris D; Ling X; Estrov Z; Quintás-Cardama A; Small D; Cortes J; Andreeff M
    J Natl Cancer Inst; 2008 Feb; 100(3):184-98. PubMed ID: 18230792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a benzimidazole-based dual FLT3/TrKA inhibitor targeting acute myeloid leukemia.
    Dokla EME; Abdel-Aziz AK; Milik SN; McPhillie MJ; Minucci S; Abouzid KAM
    Bioorg Med Chem; 2022 Feb; 56():116596. PubMed ID: 35033885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-(3-Methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine is an inhibitor of the FLT3-ITD and BCR-ABL pathways, and potently inhibits FLT3-ITD/D835Y and FLT3-ITD/F691L secondary mutants.
    Wang X; DeFilippis RA; Leung YK; Shah NP; Li HY
    Bioorg Chem; 2024 Feb; 143():106966. PubMed ID: 37995643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity toward sorafenib and sunitinib varies between different activating and drug-resistant FLT3-ITD mutations.
    Kancha RK; Grundler R; Peschel C; Duyster J
    Exp Hematol; 2007 Oct; 35(10):1522-6. PubMed ID: 17889720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia.
    Mori M; Kaneko N; Ueno Y; Yamada M; Tanaka R; Saito R; Shimada I; Mori K; Kuromitsu S
    Invest New Drugs; 2017 Oct; 35(5):556-565. PubMed ID: 28516360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.