BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35489296)

  • 1. A phage for the controlling of Salmonella in poultry and reducing biofilms.
    Ge H; Lin C; Xu Y; Hu M; Xu Z; Geng S; Jiao X; Chen X
    Vet Microbiol; 2022 Jun; 269():109432. PubMed ID: 35489296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient screening of adsorbed receptors for
    Ge H; Ye L; Cai Y; Guo H; Gu D; Xu Z; Hu M; Allison HE; Jiao X; Chen X
    Microbiol Spectr; 2023 Sep; 11(5):e0260423. PubMed ID: 37728369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a Phage Cocktail for Control of
    Islam MS; Zhou Y; Liang L; Nime I; Liu K; Yan T; Wang X; Li J
    Viruses; 2019 Sep; 11(9):. PubMed ID: 31510005
    [No Abstract]   [Full Text] [Related]  

  • 4. Three Salmonella enterica serovar Enteritidis bacteriophages from the Siphoviridae family are promising candidates for phage therapy.
    Chen Y; Sun E; Song J; Tong Y; Wu B
    Can J Microbiol; 2018 Nov; 64(11):865-875. PubMed ID: 29990444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic characterization and application of a novel bacteriophage STG2 capable of reducing planktonic and biofilm cells of Salmonella.
    Duc HM; Zhang Y; Son HM; Huang HH; Masuda Y; Honjoh KI; Miyamoto T
    Int J Food Microbiol; 2023 Jan; 385():109999. PubMed ID: 36335891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, Characterization, and Application in Poultry Products of a Salmonella-Specific Bacteriophage, S55.
    Ge H; Xu Y; Hu M; Zhang K; Zhang S; Jiao X; Chen X
    J Food Prot; 2021 Jul; 84(7):1202-1212. PubMed ID: 33710342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model.
    Kosznik-Kwaśnicka K; Stasiłojć M; Grabowski Ł; Zdrojewska K; Węgrzyn G; Węgrzyn A
    Microbiol Res; 2022 Aug; 261():127052. PubMed ID: 35533436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a novel lytic
    Al-Hindi RR; Alharbi MG; Alotibi I; Azhari SA; Algothmi KM; Esmael A
    Front Microbiol; 2023; 14():1135806. PubMed ID: 37089535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, Characterization, and Efficacy of Three Lytic Phages Infecting Multidrug-Resistant
    Sobhy H; Soliman EA; Abd El-Tawab AA; Elhofy FI; Askora A; El-Nahas EM; Wareth G; Ahmed W
    Arch Razi Inst; 2021; 76(3):507-519. PubMed ID: 34824744
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Rogovski P; Silva RD; Cadamuro RD; Souza EB; Savi BP; Viancelli A; Michelon W; Tápparo DC; Treichel H; Rodríguez-Lazaro D; Fongaro G
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophage Cocktail Can Effectively Control
    Korzeniowski P; Śliwka P; Kuczkowski M; Mišić D; Milcarz A; Kuźmińska-Bajor M
    Front Microbiol; 2022; 13():901770. PubMed ID: 35847069
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria.
    Kim S; Kim SH; Rahman M; Kim J
    J Microbiol; 2018 Dec; 56(12):917-925. PubMed ID: 30361974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat.
    Kim JH; Kim HJ; Jung SJ; Mizan MFR; Park SH; Ha SD
    J Food Sci; 2020 Mar; 85(3):526-534. PubMed ID: 32043599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of
    Milho C; Silva MD; Melo L; Santos S; Azeredo J; Sillankorva S
    Biofouling; 2018 Aug; 34(7):753-768. PubMed ID: 30270665
    [No Abstract]   [Full Text] [Related]  

  • 15. Long-Term Interactions of
    Barron-Montenegro R; Rivera D; Serrano MJ; García R; Álvarez DM; Benavides J; Arredondo F; Álvarez FP; Bastías R; Ruiz S; Hamilton-West C; Castro-Nallar E; Moreno-Switt AI
    Front Cell Infect Microbiol; 2022; 12():897171. PubMed ID: 35711664
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation, characterization, and genome analysis of a broad host range Salmonella phage vB_SenS_TUMS_E4: a candidate bacteriophage for biocontrol.
    Torkashvand N; Kamyab H; Shahverdi AR; Khoshayand MR; Sepehrizadeh Z
    Vet Res Commun; 2023 Sep; 47(3):1493-1503. PubMed ID: 37097546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry.
    Sillankorva S; Pleteneva E; Shaburova O; Santos S; Carvalho C; Azeredo J; Krylov V
    J Appl Microbiol; 2010 Apr; 108(4):1175-86. PubMed ID: 19796092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of time of therapy with wild-type lytic bacteriophages on the reduction of Salmonella Enteritidis in broiler chickens.
    Vaz CSL; Voss-Rech D; Alves L; Coldebella A; Brentano L; Trevisol IM
    Vet Microbiol; 2020 Jan; 240():108527. PubMed ID: 31902516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad-Spectrum
    Cao Y; Ma R; Li Z; Mao X; Li Y; Wu Y; Wang L; Han K; Li L; Ma D; Zhou Y; Li X; Wang X
    Viruses; 2022 Nov; 14(12):. PubMed ID: 36560651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comparative virulence for chicks of Salmonella enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States.
    Gast RK; Benson ST
    Avian Dis; 1995; 39(3):567-74. PubMed ID: 8561742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.