These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
4. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
6. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry. Ku X; Yan W Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821 [TBL] [Abstract][Full Text] [Related]
7. Benefit of In Silico Predicted Spectral Libraries in Data-Independent Acquisition Data Analysis Workflows. Staes A; Mendes Maia T; Dufour S; Bouwmeester R; Gabriels R; Martens L; Gevaert K; Impens F; Devos S J Proteome Res; 2024 Jun; 23(6):2078-2089. PubMed ID: 38666436 [TBL] [Abstract][Full Text] [Related]
8. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics. Frankenfield AM; Ni J; Ahmed M; Hao L J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413 [TBL] [Abstract][Full Text] [Related]
9. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Pino LK; Just SC; MacCoss MJ; Searle BC Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845 [TBL] [Abstract][Full Text] [Related]
10. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation. Lou R; Liu W; Li R; Li S; He X; Shui W Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227 [TBL] [Abstract][Full Text] [Related]
11. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Prostate Fluid-Based Spectral Libraries for Enhanced Protein Detection in Urine. Ha A; Khoo A; Ignatchenko V; Khan S; Waas M; Vesprini D; Liu SK; Nyalwidhe JO; Semmes OJ; Boutros PC; Kislinger T J Proteome Res; 2024 May; 23(5):1768-1778. PubMed ID: 38580319 [TBL] [Abstract][Full Text] [Related]
13. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865 [TBL] [Abstract][Full Text] [Related]
14. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167 [TBL] [Abstract][Full Text] [Related]
15. nf-encyclopedia: A Cloud-Ready Pipeline for Chromatogram Library Data-Independent Acquisition Proteomics Workflows. Allen C; Meinl R; Paez JS; Searle BC; Just S; Pino LK; Fondrie WE J Proteome Res; 2023 Aug; 22(8):2743-2749. PubMed ID: 37417926 [TBL] [Abstract][Full Text] [Related]
16. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry ("HIAP-DIA"). Zhou Y; Tan Z; Xue P; Wang Y; Li X; Guan F Proteomics; 2021 Mar; 21(5):e2000264. PubMed ID: 33460299 [TBL] [Abstract][Full Text] [Related]
17. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359 [TBL] [Abstract][Full Text] [Related]
18. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Lou R; Cao Y; Li S; Lang X; Li Y; Zhang Y; Shui W Nat Commun; 2023 Jan; 14(1):94. PubMed ID: 36609502 [TBL] [Abstract][Full Text] [Related]
19. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform. Yu F; Teo GC; Kong AT; Fröhlich K; Li GX; Demichev V; Nesvizhskii AI Nat Commun; 2023 Jul; 14(1):4154. PubMed ID: 37438352 [TBL] [Abstract][Full Text] [Related]
20. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Kawashima Y; Watanabe E; Umeyama T; Nakajima D; Hattori M; Honda K; Ohara O Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]