These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35489466)

  • 1. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A-A review.
    Moradi O
    Food Chem Toxicol; 2022 Jul; 165():113074. PubMed ID: 35489466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A.
    Tajik S; Beitollahi H; Nejad FG; Zhang K; Le QV; Jang HW; Kim SY; Shokouhimehr M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Status Update on the Development of Polymer and Metal-Based Graphene Electrochemical Sensors for Detection and Quantitation of Bisphenol A.
    Acharya PB; George A; Shrivastav PS
    Crit Rev Anal Chem; 2024; 54(4):669-690. PubMed ID: 35776701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode.
    Li Y; Zhai X; Liu X; Wang L; Liu H; Wang H
    Talanta; 2016 Feb; 148():362-9. PubMed ID: 26653461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective.
    Kumar P; Shimali ; Chamoli S; Khondakar KR
    Methods; 2023 Dec; 220():69-78. PubMed ID: 37951559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol A in food package.
    Jiao S; Jin J; Wang L
    Talanta; 2014 May; 122():140-4. PubMed ID: 24720975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical Bisphenol F sensor based on ZnO/G nano composite and CTAB surface modified carbon paste electrode architecture.
    Manasa G; Mascarenhas RJ; Satpati AK; Basavaraja BM; Kumar S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():144-151. PubMed ID: 29894835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.
    Wang X; Lu X; Wu L; Chen J
    Biosens Bioelectron; 2015 Mar; 65():295-301. PubMed ID: 25461172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced sensing platform for electrochemical monitoring of the environmental toxin; bisphenol A.
    Ezoji H; Rahimnejad M; Najafpour-Darzi G
    Ecotoxicol Environ Saf; 2020 Mar; 190():110088. PubMed ID: 31865204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single atom nanozyme sensing platform for simultaneous rapid detection of multiple bisphenols.
    Zhang M; Wang G; Chen J; Lu X
    Anal Chim Acta; 2024 Jun; 1307():342628. PubMed ID: 38719415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic electrochemical aptasensor for enrichment and detection of bisphenol A.
    Kashefi-Kheyrabadi L; Kim J; Gwak H; Hyun KA; Bae NH; Lee SJ; Jung HI
    Biosens Bioelectron; 2018 Oct; 117():457-463. PubMed ID: 29982114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A.
    Beitollahi H; Tajik S
    Environ Monit Assess; 2015 May; 187(5):257. PubMed ID: 25877650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A.
    Ensafi AA; Amini M; Rezaei B
    Mikrochim Acta; 2018 Apr; 185(5):265. PubMed ID: 29691660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel and label-free immunosensor for bisphenol A using rutin as the redox probe.
    Huang Y; Li X; Zheng S
    Talanta; 2016 Nov; 160():241-246. PubMed ID: 27591610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A.
    Goulart LA; de Moraes FC; Mascaro LH
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():768-73. PubMed ID: 26478370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecularly imprinted polymer-based electrochemical sensor for the determination of endocrine disruptor bisphenol-A in bovine milk.
    Karthika P; Shanmuganathan S; Viswanathan S; Delerue-Matos C
    Food Chem; 2021 Nov; 363():130287. PubMed ID: 34120051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational functionalization of reduced graphene oxide with an imidazole group for the electrochemical sensing of bisphenol A - an endocrine disruptor.
    Manna B
    Analyst; 2018 Jul; 143(14):3451-3457. PubMed ID: 29922801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers.
    Zheng Z; Du Y; Wang Z; Feng Q; Wang C
    Analyst; 2013 Jan; 138(2):693-701. PubMed ID: 23187892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Sensing of Bisphenol A by a Didodecyldimethylammonium Bromide-Modified Expanded Graphite Paste Electrode.
    Zhang J; Ma S; Wang W; Chen Z
    J AOAC Int; 2016 Jul; 99(4):1066-1072. PubMed ID: 27213485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring diameters of carbon nanofibers with optimal mesopores to remarkably promote hemin adsorption toward ultrasensitive detection of bisphenol A.
    Zhang Y; Chen Y; Lei Y; Lu H; Wang X; Zhang Z; Li J
    Food Chem; 2022 Jul; 383():132628. PubMed ID: 35413765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.