These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35489861)

  • 1. Orbits of charged particles trapped in a dipole magnetic field.
    Liu R; Liu S; Zhu F; Chen Q; He Y; Cai C
    Chaos; 2022 Apr; 32(4):043104. PubMed ID: 35489861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From period to quasiperiod to chaos: A continuous spectrum of orbits of charged particles trapped in a dipole magnetic field.
    Xie Y; Liu S
    Chaos; 2020 Dec; 30(12):123108. PubMed ID: 33380059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis.
    Qi G; Gou T; Hu J; Chen G
    Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling investigation for the dynamics of charged particles in an electric field accelerator.
    Gouve A Ladeira D; Leonel ED
    Chaos; 2012 Dec; 22(4):043148. PubMed ID: 23278083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme.
    Saitoh H; Yoshida Z; Yano Y; Nishiura M; Kawazura Y; Horn-Stanja J; Pedersen TS
    Phys Rev E; 2016 Oct; 94(4-1):043203. PubMed ID: 27841504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic orbits in Hamiltonian chaos of the annular billiard.
    Gouesbet G; Meunier-Guttin-Cluzel S; Grehan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016212. PubMed ID: 11800773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network analysis of chaotic systems through unstable periodic orbits.
    Kobayashi MU; Saiki Y
    Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials.
    Sideris IV; Kandrup HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying chaos using Lagrangian descriptors.
    Hillebrand M; Zimper S; Ngapasare A; Katsanikas M; Wiggins S; Skokos C
    Chaos; 2022 Dec; 32(12):123122. PubMed ID: 36587363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of transient chaotic time series.
    Dhamala M; Lai YC; Kostelich EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056207. PubMed ID: 11736054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of charged particle dynamics in time-stationary and time-varying spatially chaotic magnetic fields with sinusoidal spatiotemporal dependence.
    Samanta S
    Chaos; 2021 Aug; 31(8):083113. PubMed ID: 34470244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of ordered periodic orbits with increasing wavelength for sound propagation in a range-dependent waveguide.
    Kon'kov LE; Makarov DV; Sosedko EV; Uleysky MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056212. PubMed ID: 18233744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic interactions of self-replicating RNA.
    Forst CV
    Comput Chem; 1996 Mar; 20(1):69-83. PubMed ID: 16718865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method.
    Azimi S; Ashtari O; Schneider TM
    Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak chaos and the "melting transition" in a confined microplasma system.
    Antonopoulos C; Basios V; Bountis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016211. PubMed ID: 20365450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear dynamics of atoms in a crossed optical dipole trap.
    González-Férez R; Iñarrea M; Salas JP; Schmelcher P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062919. PubMed ID: 25615176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient topological chaos embedded in the blinking vortex system.
    Kin E; Sakajo T
    Chaos; 2005 Jun; 15(2):23111. PubMed ID: 16035887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic motion of charged particles in toroidal magnetic configurations.
    Cambon B; Leoncini X; Vittot M; Dumont R; Garbet X
    Chaos; 2014 Sep; 24(3):033101. PubMed ID: 25273181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.