These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35489877)

  • 1. Continuous motion estimation of lower limbs based on deep belief networks and random forest.
    Wang F; Lu J; Fan Z; Ren C; Geng X
    Rev Sci Instrum; 2022 Apr; 93(4):044106. PubMed ID: 35489877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online Adaptive Prediction of Human Motion Intention Based on sEMG.
    Ding Z; Yang C; Wang Z; Yin X; Jiang F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography.
    Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Motion Estimation of Knee Joint Based on a Parameter Self-Updating Mechanism Model.
    Li J; Li K; Zhang J; Cao J
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sEMG-Based End-to-End Continues Prediction of Human Knee Joint Angles Using the Tightly Coupled Convolutional Transformer Model.
    Liang T; Sun N; Wang Q; Bu J; Li L; Chen Y; Cao M; Ma J; Liu T
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5272-5280. PubMed ID: 37566511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A pace recognition method for exoskeleton wearers based on support vector machine-hidden Markov model].
    Hu D; Liu Z; Chen L; Wang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):84-91. PubMed ID: 35231969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K; Huang R; Mu F; Peng Z; Yin J; Cheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography.
    Tu P; Li J; Wang H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Knee Joint Angle from Surface EMG Using Multiple Kernels Relevance Vector Regression.
    Li HB; Guan XR; Li Z; Zou KF; He L
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements.
    Zhong T; Li D; Wang J; Xu J; An Z; Zhu Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.