These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35489893)
1. An accurate method to determine nano-film thickness in diamond anvil cells for time domain thermoreflectance measurements. Zhang Z; Fan X; Zhu J; Zhou J; Tang D Rev Sci Instrum; 2022 Apr; 93(4):043904. PubMed ID: 35489893 [TBL] [Abstract][Full Text] [Related]
2. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR). Jiang P; Huang B; Koh YK Rev Sci Instrum; 2016 Jul; 87(7):075101. PubMed ID: 27475589 [TBL] [Abstract][Full Text] [Related]
3. Examining thermal transport through a frequency-domain representation of time-domain thermoreflectance data. Collins KC; Maznev AA; Cuffe J; Nelson KA; Chen G Rev Sci Instrum; 2014 Dec; 85(12):124903. PubMed ID: 25554315 [TBL] [Abstract][Full Text] [Related]
4. Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements. Hasegawa A; Yagi T; Ohta K Rev Sci Instrum; 2019 Jul; 90(7):074901. PubMed ID: 31370458 [TBL] [Abstract][Full Text] [Related]
5. Accurate Thermal Conductivity Measurements of Porous Thin Films by Time-Domain Thermoreflectance. Walwil HM; Zhao Y; Koh YK ACS Appl Mater Interfaces; 2024 Jan; 16(2):2861-2867. PubMed ID: 38165223 [TBL] [Abstract][Full Text] [Related]
6. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance. Qian X; Ding Z; Shin J; Schmidt AJ; Chen G Rev Sci Instrum; 2020 Jun; 91(6):064903. PubMed ID: 32611038 [TBL] [Abstract][Full Text] [Related]
7. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Wang L; Cheaito R; Braun JL; Giri A; Hopkins PE Rev Sci Instrum; 2016 Sep; 87(9):094902. PubMed ID: 27782592 [TBL] [Abstract][Full Text] [Related]
8. Thickness measurement of sample in diamond anvil cell. Li M; Gao C; Peng G; He C; Hao A; Huang X; Zhang D; Yu C; Ma Y; Zou G Rev Sci Instrum; 2007 Jul; 78(7):075106. PubMed ID: 17672792 [TBL] [Abstract][Full Text] [Related]
9. A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method. Jiang P; Qian X; Yang R Rev Sci Instrum; 2018 Sep; 89(9):094902. PubMed ID: 30278764 [TBL] [Abstract][Full Text] [Related]
10. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Dalton DA; Hsieh WP; Hohensee GT; Cahill DG; Goncharov AF Sci Rep; 2013; 3():2400. PubMed ID: 23929068 [TBL] [Abstract][Full Text] [Related]
11. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library. d'Acremont Q; Pernot G; Rampnoux JM; Furlan A; Lacroix D; Ludwig A; Dilhaire S Rev Sci Instrum; 2017 Jul; 88(7):074902. PubMed ID: 28764526 [TBL] [Abstract][Full Text] [Related]
12. Density measurements of noncrystalline materials at high pressure with diamond anvil cell. Hong X; Shen G; Prakapenka VB; Rivers ML; Sutton SR Rev Sci Instrum; 2007 Oct; 78(10):103905. PubMed ID: 17979433 [TBL] [Abstract][Full Text] [Related]
13. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films. Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824 [TBL] [Abstract][Full Text] [Related]
14. Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR). Sun B; Koh YK Rev Sci Instrum; 2016 Jun; 87(6):064901. PubMed ID: 27370481 [TBL] [Abstract][Full Text] [Related]
15. Thermal conductance of metal-diamond interfaces at high pressure. Hohensee GT; Wilson RB; Cahill DG Nat Commun; 2015 Mar; 6():6578. PubMed ID: 25744853 [TBL] [Abstract][Full Text] [Related]
16. Reducing the uncertainty caused by the laser spot radius in frequency-domain thermoreflectance measurements of thermal properties. Wang X; Jeong M; McGaughey AJH; Malen JA Rev Sci Instrum; 2022 Feb; 93(2):023001. PubMed ID: 35232151 [TBL] [Abstract][Full Text] [Related]
17. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes. Matsumoto R; Sasama Y; Fujioka M; Irifune T; Tanaka M; Yamaguchi T; Takeya H; Takano Y Rev Sci Instrum; 2016 Jul; 87(7):076103. PubMed ID: 27475610 [TBL] [Abstract][Full Text] [Related]
18. Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Jiang P; Qian X; Yang R Rev Sci Instrum; 2017 Jul; 88(7):074901. PubMed ID: 28764522 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838 [TBL] [Abstract][Full Text] [Related]
20. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance. Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]