These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35489893)

  • 21. Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method.
    Li M; Kang JS; Hu Y
    Rev Sci Instrum; 2018 Aug; 89(8):084901. PubMed ID: 30184688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interpreting picosecond acoustics in the case of low interface stiffness.
    Hohensee GT; Hsieh WP; Losego MD; Cahill DG
    Rev Sci Instrum; 2012 Nov; 83(11):114902. PubMed ID: 23206084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Conductivity of Helium and Argon at High Pressure and High Temperature.
    Hsieh WP; Tsao YC; Lin CH
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diamond anvil cell behavior up to 4 Mbar.
    Li B; Ji C; Yang W; Wang J; Yang K; Xu R; Liu W; Cai Z; Chen J; Mao HK
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1713-1717. PubMed ID: 29432145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative experimental study on the cross-plane thermal conductivities of nano-constructed Sb
    Yang G; Pan J; Fu X; Hu Z; Wang Y; Wu Z; Mu E; Yan XJ; Lu MH
    Nano Converg; 2018 Dec; 5(1):22. PubMed ID: 30148043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry.
    Feser JP; Liu J; Cahill DG
    Rev Sci Instrum; 2014 Oct; 85(10):104903. PubMed ID: 25362440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of diamond under hydrostatic pressures up to 140 GPa.
    Occelli F; Loubeyre P; LeToullec R
    Nat Mater; 2003 Mar; 2(3):151-4. PubMed ID: 12612670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal Characterization of Metal-Diamond Composite Heat Spreaders Using Low-Frequency-Domain Thermoreflectance.
    Abdallah Z; Pomeroy JW; Neubauer E; Kuball M
    ACS Appl Electron Mater; 2023 Sep; 5(9):5017-5024. PubMed ID: 37779888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal Characterization of Metal-Oxide Interfaces Using Time-Domain Thermoreflectance with Nanograting Transducers.
    Kwon H; Perez C; Park W; Asheghi M; Goodson KE
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58059-58065. PubMed ID: 34797056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide bandwidth frequency-domain thermoreflectance: Volumetric heat capacity, anisotropic thermal conductivity, and thickness measurements.
    Ziade E
    Rev Sci Instrum; 2020 Dec; 91(12):124901. PubMed ID: 33379952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High sensitivity pump-probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator.
    Gomez MJ; Liu K; Lee JG; Wilson RB
    Rev Sci Instrum; 2020 Feb; 91(2):023905. PubMed ID: 32113424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical transport measurements of thin film samples under high hydrostatic pressure.
    Zabaleta J; Parks SC; Baum B; Teker A; Syassen K; Mannhart J
    Rev Sci Instrum; 2017 Mar; 88(3):033901. PubMed ID: 28372381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance.
    Cheng Z; Mu F; Ji X; You T; Xu W; Suga T; Ou X; Cahill DG; Graham S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31843-31851. PubMed ID: 34191480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices.
    Cheng Z; Mu F; Yates L; Suga T; Graham S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell.
    O'Bannon EF; Jenei Z; Cynn H; Lipp MJ; Jeffries JR
    Rev Sci Instrum; 2018 Nov; 89(11):111501. PubMed ID: 30501343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials.
    Evans WJ; Yoo CS; Lee GW; Cynn H; Lipp MJ; Visbeck K
    Rev Sci Instrum; 2007 Jul; 78(7):073904. PubMed ID: 17672770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toroidal diamond anvil cell for detailed measurements under extreme static pressures.
    Dewaele A; Loubeyre P; Occelli F; Marie O; Mezouar M
    Nat Commun; 2018 Jul; 9(1):2913. PubMed ID: 30046093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry.
    Wenk HR; Lonardelli I; Merkel S; Miyagi L; Pehl J; Speziale S; Tommaseo CE
    J Phys Condens Matter; 2006 Jun; 18(25):S933-47. PubMed ID: 22611103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unwrapping a full temporal cycle in time domain thermoreflectance for enhanced measurement sensitivity in thermally insulating materials.
    Donovan BF; Gray TL; Wilson AA; Warzoha RJ
    Rev Sci Instrum; 2022 Aug; 93(8):084904. PubMed ID: 36050106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.