These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35489893)

  • 41. Anisotropic thermal conductivity of the nanoparticles embedded GaSb thin film semiconductor.
    Koh YR; Lu H; Gossard AC; Shakouri A
    Nanotechnology; 2021 Jan; 32(3):035702. PubMed ID: 32906112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-pressure rotational deformation apparatus to 135 GPa.
    Nomura R; Azuma S; Uesugi K; Nakashima Y; Irifune T; Shinmei T; Kakizawa S; Kojima Y; Kadobayashi H
    Rev Sci Instrum; 2017 Apr; 88(4):044501. PubMed ID: 28456273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal conductivity reduction of crystalline silicon by high-pressure torsion.
    Harish S; Tabara M; Ikoma Y; Horita Z; Takata Y; Cahill DG; Kohno M
    Nanoscale Res Lett; 2014; 9(1):326. PubMed ID: 25024687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ Hall effect measurement on diamond anvil cell under high pressure.
    Hu T; Cui X; Gao Y; Han Y; Liu C; Liu B; Liu H; Ma Y; Gao C
    Rev Sci Instrum; 2010 Nov; 81(11):115101. PubMed ID: 21133495
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isothermal equation of state of crystalline and glassy materials from optical measurements in diamond anvil cells.
    Fedotenko T; Souza DS; Khandarkhaeva S; Dubrovinsky L; Dubrovinskaia N
    Rev Sci Instrum; 2021 Jun; 92(6):063907. PubMed ID: 34243540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anisotropic thermoreflectance thermometry: A contactless frequency-domain thermoreflectance approach to study anisotropic thermal transport.
    Pérez LA; Xu K; Wagner MR; Dörling B; Perevedentsev A; Goñi AR; Campoy-Quiles M; Alonso MI; Reparaz JS
    Rev Sci Instrum; 2022 Mar; 93(3):034902. PubMed ID: 35365009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature.
    Miyagi L; Kanitpanyacharoen W; Raju SV; Kaercher P; Knight J; MacDowell A; Wenk HR; Williams Q; Alarcon EZ
    Rev Sci Instrum; 2013 Feb; 84(2):025118. PubMed ID: 23464262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology.
    Pigott JS; Reaman DM; Panero WR
    Rev Sci Instrum; 2011 Nov; 82(11):115106. PubMed ID: 22129012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of crystallinity on thermal transport in textured lead zirconate titanate thin films.
    Varghese R; Harikrishna H; Huxtable ST; Reynolds WT; Priya S
    ACS Appl Mater Interfaces; 2014 May; 6(9):6748-56. PubMed ID: 24689852
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-pressure polymorphs of olivine and the 660-km seismic discontinuity.
    Chudinovskikh L; Boehler R
    Nature; 2001 May; 411(6837):574-7. PubMed ID: 11385569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A broadband pulse amplifier for Joule heating experiments in diamond anvil cells.
    Geballe ZM; Lai J; Walter MJ
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38717268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Pressure Effect on the Optical Extinction of a Single Gold Nanoparticle.
    Medeghini F; Hettich M; Rouxel R; Silva Santos SD; Hermelin S; Pertreux E; Torres Dias A; Legrand F; Maioli P; Crut A; Vallée F; San Miguel A; Del Fatti N
    ACS Nano; 2018 Oct; 12(10):10310-10316. PubMed ID: 30299926
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical conductivity measurements of aqueous fluids under pressure with a hydrothermal diamond anvil cell.
    Ni H; Chen Q; Keppler H
    Rev Sci Instrum; 2014 Nov; 85(11):115107. PubMed ID: 25430149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quasi-Ballistic Thermal Transport Across MoS
    Sood A; Xiong F; Chen S; Cheaito R; Lian F; Asheghi M; Cui Y; Donadio D; Goodson KE; Pop E
    Nano Lett; 2019 Apr; 19(4):2434-2442. PubMed ID: 30808167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comprehensive characterization of thermal and mechanical properties in thin metal film-glass substrate system by ultrafast laser pump-probe method.
    Tu X; Zeng Y; Wang S; Li L; Li C; Wang Z
    Opt Express; 2022 Dec; 30(26):46193-46208. PubMed ID: 36558579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An electrical microheater technique for high-pressure and high-temperature diamond anvil cell experiments.
    Weir ST; Jackson DD; Falabella S; Samudrala G; Vohra YK
    Rev Sci Instrum; 2009 Jan; 80(1):013905. PubMed ID: 19191445
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical full-field strain measurement within a diamond anvil cell.
    Fréville R; Bruzy N; Dewaele A
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38117198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications.
    Chang G; Sun F; Wang L; Che Z; Wang X; Wang J; Kim MJ; Zhang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26507-26517. PubMed ID: 31283161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties.
    Wilson RB; Apgar BA; Martin LW; Cahill DG
    Opt Express; 2012 Dec; 20(27):28829-38. PubMed ID: 23263123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.