These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35489952)

  • 21. First performance results of PTB's atomic caesium fountain and a study of contributions to its frequency instability.
    Weyers S; Bauch A; Hubner U; Schroder R; Tamm C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):432-7. PubMed ID: 18238561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard.
    Tobar ME; Hartnett JG; Ivanov EN; Cros D; Bilski P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1349-55. PubMed ID: 12403136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Power dependence of distributed cavity phase-induced frequency biases in atomic fountain frequency standards.
    Jefferts SR; Shirley JH; Ashby N; Burt EA; Dick GJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2314-21. PubMed ID: 16463499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous optical generation of microwave signals for fountain clocks.
    Lipphardt B; Walkemeyer P; Kazda M; Rahm J; Weyers S
    Appl Opt; 2023 Oct; 62(29):7628-7632. PubMed ID: 37855470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.
    François B; Calosso CE; Danet JM; Boudot R
    Rev Sci Instrum; 2014 Sep; 85(9):094709. PubMed ID: 25273756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold collision frequency shifts in a 87Rb atomic fountain.
    Sortais Y; Bize S; Nicolas C; Clairon A; Salomon C; Williams C
    Phys Rev Lett; 2000 Oct; 85(15):3117-20. PubMed ID: 11019280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave oscillator using piezoelectric thin-film resonator aiming for ultraminiaturization of atomic clock.
    Hara M; Yano Y; Kajita M; Nishino H; Ibata Y; Toda M; Hara S; Kasamatsu A; Ito H; Ono T; Ido T
    Rev Sci Instrum; 2018 Oct; 89(10):105002. PubMed ID: 30399742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of an Atomic Clock using Squeezed Vacuum.
    Kruse I; Lange K; Peise J; Lücke B; Pezzè L; Arlt J; Ertmer W; Lisdat C; Santos L; Smerzi A; Klempt C
    Phys Rev Lett; 2016 Sep; 117(14):143004. PubMed ID: 27740781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Stability Comparison of Atomic Fountains using two Different Cryogenic Oscillators.
    Abgrall M; Guena J; Lours M; Santarelli G; Tobar M; Bize S; Grop S; Dubois B; Fluhr C; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1198-1203. PubMed ID: 28113421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling the cold collision shift in high precision atomic interferometry.
    Pereira Dos Santos F; Marion H; Bize S; Sortais Y; Clairon A; Salomon C
    Phys Rev Lett; 2002 Dec; 89(23):233004. PubMed ID: 12485005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Test and Analysis of Timekeeping Performance of Atomic Clock.
    Li S; Li C; Wu J; Cui H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct observation of resonant scattering phase shifts and their energy dependence.
    Gensemer SD; Martin-Wells RB; Bennett AW; Gibble K
    Phys Rev Lett; 2012 Dec; 109(26):263201. PubMed ID: 23368559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency performances of a miniature optically pumped cesium beam frequency standard.
    Bousset B; Lucas-Leclin G; Hamouda F; Cerez P; Theobald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):366-71. PubMed ID: 18238433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigation of lamp oven and cavity oven temperature-induced frequency variation in rubidium atomic clock.
    Guo Y; Wang S; Zhu L; Cai Z; Lu F; Li W; Liu Z
    Rev Sci Instrum; 2023 Jan; 94(1):014706. PubMed ID: 36725575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and metrological features of microwave synthesizers for atomic fountain frequency standard.
    Chambon D; Lours M; Chapelet F; Bize S; Tobar ME; Clairon A; Santarelli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):729-35. PubMed ID: 17441582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable microwave coaxial cavity plasma system at atmospheric pressure.
    Song H; Hong JM; Lee KH; Choi JJ
    Rev Sci Instrum; 2008 May; 79(5):054702. PubMed ID: 18513083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave leakage-induced frequency shifts in the primary frequency standards NIST-F1 and IEN-CSF1.
    Shirley JH; Levi F; Heavner TP; Calonico D; Yu DH; Jefferts SR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2376-85. PubMed ID: 17186920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary Atomic Frequency Standards at NIST.
    Sullivan DB; Bergquist JC; Bollinger JJ; Drullinger RE; Itano WM; Jefferts SR; Lee WD; Meekhof D; Parker TE; Walls FL; Wineland DJ
    J Res Natl Inst Stand Technol; 2001; 106(1):47-63. PubMed ID: 27500017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High performance distributed Bragg reflector microwave resonator.
    Flory CA; Taber RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):486-95. PubMed ID: 18244146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.