These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35489995)

  • 41. Nanoscale microcavity sensor for single particle detection.
    Lee MR; Fauchet PM
    Opt Lett; 2007 Nov; 32(22):3284-6. PubMed ID: 18026281
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic nanoparticle assemblies.
    Wang L; Xu L; Kuang H; Xu C; Kotov NA
    Acc Chem Res; 2012 Nov; 45(11):1916-26. PubMed ID: 22449243
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging a single quantum dot when it is dark.
    Kukura P; Celebrano M; Renn A; Sandoghdar V
    Nano Lett; 2009 Mar; 9(3):926-9. PubMed ID: 18671437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in Fluorescent Single-Chain Nanoparticles.
    De-La-Cuesta J; González E; Pomposo JA
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29072594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Near-field microscopy: throwing light on the nanoworld.
    Richards D
    Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2843-57. PubMed ID: 14667301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feature issue introduction: quantum dots for photonic applications.
    Lee KS; Prasad PN; Huyet G; Tan CH
    Opt Express; 2012 May; 20(10):10721-3. PubMed ID: 22565697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update.
    Widom JR; Dhakal S; Heinicke LA; Walter NG
    Arch Toxicol; 2014 Nov; 88(11):1965-85. PubMed ID: 25212907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides.
    Davanço M; Srinivasan K
    Opt Express; 2009 Jun; 17(13):10542-63. PubMed ID: 19550451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoscale depth resolution in scanning near-field infrared microscopy.
    Wollny G; Bründermann E; Arsov Z; Quaroni L; Havenith M
    Opt Express; 2008 May; 16(10):7453-9. PubMed ID: 18545450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resonant mode coupling of optical resonances in stacked nanostructures.
    Gippius NA; Weiss T; Tikhodeev SG; Giessen H
    Opt Express; 2010 Mar; 18(7):7569-74. PubMed ID: 20389778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations.
    Moran-Mirabal JM; Craighead HG
    Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies.
    De Angelis F; Liberale C; Coluccio ML; Cojoc G; Di Fabrizio E
    Nanoscale; 2011 Jul; 3(7):2689-96. PubMed ID: 21562670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facile Production of Hexagonal Boron Nitride Nanoparticles by Cryogenic Exfoliation.
    Duong NMH; Glushkov E; Chernev A; Navikas V; Comtet J; Nguyen MAP; Toth M; Radenovic A; Tran TT; Aharonovich I
    Nano Lett; 2019 Aug; 19(8):5417-5422. PubMed ID: 31264881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Watching single nanoparticles grow in real time through supercontinuum spectroscopy.
    Herrmann LO; Baumberg JJ
    Small; 2013 Nov; 9(22):3743-7. PubMed ID: 23650155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing.
    Nichkova M; Dosev D; Perron R; Gee SJ; Hammock BD; Kennedy IM
    Anal Bioanal Chem; 2006 Feb; 384(3):631-7. PubMed ID: 16416096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From DNA Nanotechnology to Material Systems Engineering.
    Hu Y; Niemeyer CM
    Adv Mater; 2019 Jun; 31(26):e1806294. PubMed ID: 30767279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Super-resolution bright-field optical microscopy based on nanometer topographic contrast.
    Huang SW; Mong HY; Lee CH
    Microsc Res Tech; 2004 Nov; 65(4-5):180-5. PubMed ID: 15630691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.