These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35489998)

  • 1. Interfacial thermal transport between graphene and diamane.
    Hong Y; Kretchmer JS
    J Chem Phys; 2022 Apr; 156(16):164703. PubMed ID: 35489998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering.
    Zhu L; Li W; Ding F
    Nanoscale; 2019 Mar; 11(10):4248-4257. PubMed ID: 30623946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructure engineering of two-dimensional diamonds toward high thermal conductivity and approaching zero Poisson's ratio.
    Hu Y; Li D; Feng C; Li S; Chen B; Li D; Zhang G
    Phys Chem Chem Phys; 2022 Jun; 24(25):15340-15348. PubMed ID: 35703326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Atomically Thin Hexagonal Diamond with Compression.
    Ke F; Zhang L; Chen Y; Yin K; Wang C; Tzeng YK; Lin Y; Dong H; Liu Z; Tse JS; Mao WL; Wu J; Chen B
    Nano Lett; 2020 Aug; 20(8):5916-5921. PubMed ID: 32578991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability and electronic and mechanical properties of nitrogen- and boron-doped fluorinated diamane.
    Gao L; Liu Y; Liang Y; Gao N; Liu J; Li H
    Phys Chem Chem Phys; 2023 Sep; 25(36):24518-24525. PubMed ID: 37656439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant thermal conductivity and strain thermal response of nitrogen substituted diamane: a machine-learning-based prediction.
    Wang B; Huang Z; Xu X; Fan S; Zhao K; Zhu J
    Nanoscale; 2024 Aug; 16(30):14387-14401. PubMed ID: 39011749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-plane thermal transport in black phosphorene/graphene layered heterostructures: a molecular dynamics study.
    Liang T; Zhang P; Yuan P; Zhai S
    Phys Chem Chem Phys; 2018 Aug; 20(32):21151-21162. PubMed ID: 30079924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon thermal conduction in a graphene-C
    Han D; Wang X; Ding W; Chen Y; Zhang J; Xin G; Cheng L
    Nanotechnology; 2019 Feb; 30(7):075403. PubMed ID: 30524108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the thermal conductivity, interlayer thermal resistance, and interfacial thermal conductance of C
    Song J; Xu Z; He X; Liang X
    Phys Chem Chem Phys; 2022 Apr; 24(16):9648-9658. PubMed ID: 35411355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceptional in-plane and interfacial thermal transport in graphene/2D-SiC van der Waals heterostructures.
    Islam MS; Mia I; Ahammed S; Stampfl C; Park J
    Sci Rep; 2020 Dec; 10(1):22050. PubMed ID: 33328491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical regulation to interfacial thermal transport in GaN/diamond heterostructures for thermal switch.
    Yu X; Li Y; He R; Wen Y; Chen R; Xu B; Gao Y
    Nanoscale Horiz; 2024 Aug; 9(9):1557-1567. PubMed ID: 39016031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene.
    Mohammadi R; Ghaderi MR; Hajian E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Study on the Nanofriction Properties of Diamane: The Thinnest Diamond Film.
    Wang J; Li L; Wang J; Yang W; Guo P; Li M; Liu D; Zeng H; Zhao B
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal transport of graphene-C
    Zhang G; Dong S; Wang X; Xin G
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X; Han Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.