These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 35490141)

  • 21. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells.
    Mahabadi JA; Sabzalipoor H; Nikzad H; Seyedhosseini E; Enderami SE; Gheibi Hayat SM; Sahebkar A
    J Cell Physiol; 2019 Aug; 234(8):12278-12289. PubMed ID: 30536380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Differentiation of pluripotent stem cells into male germ cells: An update].
    Wang SY; Cui YG; Qin LJ
    Zhonghua Nan Ke Xue; 2017 May; 23(5):468-472. PubMed ID: 29717842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance.
    Liu K; Zhao Q; Liu P; Cao J; Gong J; Wang C; Wang W; Li X; Sun H; Zhang C; Li Y; Jiang M; Zhu S; Sun Q; Jiao J; Hu B; Zhao X; Li W; Chen Q; Zhou Q; Zhao T
    Autophagy; 2016 Nov; 12(11):2000-2008. PubMed ID: 27575019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research progress and application prospects of stable porcine pluripotent stem cells†.
    Zhang J; Zhi M; Gao D; Zhu Q; Gao J; Zhu G; Cao S; Han J
    Biol Reprod; 2022 Jul; 107(1):226-236. PubMed ID: 35678320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E
    Methods Mol Biol; 2017; 1538():53-66. PubMed ID: 27943183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Autophagy in the Maintenance of Stemness and Differentiation of Mesenchymal Stem Cells.
    Sbrana FV; Cortini M; Avnet S; Perut F; Columbaro M; De Milito A; Baldini N
    Stem Cell Rev Rep; 2016 Dec; 12(6):621-633. PubMed ID: 27696271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling Cancer with Pluripotent Stem Cells.
    Gingold J; Zhou R; Lemischka IR; Lee DF
    Trends Cancer; 2016 Sep; 2(9):485-494. PubMed ID: 27722205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Extracellular Matrix-based Culture System for Generation of Human Pluripotent Stem Cell Derived-hepatocytes.
    Forouzesh M; Hosseini M; Ataei M; Farzaneh M; Khoshnam SE
    Curr Stem Cell Res Ther; 2021; 16(7):888-896. PubMed ID: 33371861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pluripotent stem cells for the study of early human embryology.
    Semi K; Takashima Y
    Dev Growth Differ; 2021 Feb; 63(2):104-115. PubMed ID: 33570781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Returning to the stem state: epigenetics of recapitulating pre-differentiation chromatin structure.
    Shafa M; Krawetz R; Rancourt DE
    Bioessays; 2010 Sep; 32(9):791-9. PubMed ID: 20652894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of telomere-binding modulators in pluripotent stem cells.
    Li F; Ge Y; Liu D; Songyang Z
    Protein Cell; 2020 Jan; 11(1):60-70. PubMed ID: 31350723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Telomere regulation in pluripotent stem cells.
    Huang Y; Liang P; Liu D; Huang J; Songyang Z
    Protein Cell; 2014 Mar; 5(3):194-202. PubMed ID: 24563217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functions of p53 in pluripotent stem cells.
    Fu X; Wu S; Li B; Xu Y; Liu J
    Protein Cell; 2020 Jan; 11(1):71-78. PubMed ID: 31691903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iPSCs: A Comparison between Animals and Plants.
    Sang YL; Cheng ZJ; Zhang XS
    Trends Plant Sci; 2018 Aug; 23(8):660-666. PubMed ID: 29880405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells.
    Shimada M; Tsukada K; Kagawa N; Matsumoto Y
    J Radiat Res; 2019 Nov; 60(6):719-728. PubMed ID: 31665364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells.
    Varzideh F; Gambardella J; Kansakar U; Jankauskas SS; Santulli G
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embryonic stem cell interactomics: the beginning of a long road to biological function.
    Yousefi M; Hajihoseini V; Jung W; Hosseinpour B; Rassouli H; Lee B; Baharvand H; Lee K; Salekdeh GH
    Stem Cell Rev Rep; 2012 Dec; 8(4):1138-54. PubMed ID: 22847281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Germline Stem Cells: A Useful Tool for Therapeutic Cloning.
    Zhang X; Peng Y; Zou K
    Curr Stem Cell Res Ther; 2018; 13(4):236-242. PubMed ID: 26899394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The emerging mechanisms and functions of microautophagy.
    Wang L; Klionsky DJ; Shen HM
    Nat Rev Mol Cell Biol; 2023 Mar; 24(3):186-203. PubMed ID: 36097284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embryoid Body Formation from Mouse and Human Pluripotent Stem Cells for Transplantation to Study Brain Microenvironment and Cellular Differentiation.
    Guerra-Crespo M; Collazo-Navarrete O; Ramos-Acevedo R; Morato-Torres CA; Schüle B
    Methods Mol Biol; 2022; 2520():215-232. PubMed ID: 34611820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.