BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35490207)

  • 21. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs.
    Shi Y; Xing TL; Zhang HB; Yin RX; Yang SM; Wei J; Zhang WJ
    Biomed Mater; 2018 Mar; 13(3):035008. PubMed ID: 29307874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting.
    Xu J; Zheng S; Hu X; Li L; Li W; Parungao R; Wang Y; Nie Y; Liu T; Song K
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32485901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles.
    Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S
    J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold.
    P B S; S G; J P; Muthusamy S; R N; Krishnakumar GS; R S
    Int J Biol Macromol; 2022 Jan; 195():179-189. PubMed ID: 34863969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three Dimensional Printing Bilayer Membrane Scaffold Promotes Wound Healing.
    Wang S; Xiong Y; Chen J; Ghanem A; Wang Y; Yang J; Sun B
    Front Bioeng Biotechnol; 2019; 7():348. PubMed ID: 31803738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation.
    Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D
    Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineered dermis loaded with confining forces promotes full-thickness wound healing by enhancing vascularisation and epithelialisation.
    Zhang G; Zhang Z; Cao G; Jin Q; Xu L; Li J; Liu Z; Xu C; Le Y; Fu Y; Ju J; Li B; Hou R
    Acta Biomater; 2023 Oct; 170():464-478. PubMed ID: 37657662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Bioprinting of Artificial Skin Substitute with Improved Mechanical Property and Regulated Cell Behavior through Integrating Patterned Nanofibrous Films.
    Bian S; Hu X; Zhu H; Du W; Wang C; Wang L; Hao L; Xiang Y; Meng F; Hu C; Wu Z; Wang J; Pan X; Guan M; Lu WW; Zhao X
    ACS Nano; 2024 Jun; ():. PubMed ID: 38941540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bilayer silk fibroin/sodium alginate scaffold promotes vascularization and advances inflammation stage in full-thickness wound.
    Shen Y; Wang X; Wang Y; Guo X; Yu K; Dong K; Guo Y; Cai C; Li B
    Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35617935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Experimental study on the effect of three-dimensional porous structures on the vascularization rate of artificial dermis].
    Tan RW; Liu X; Chen YY; Xu MQ; Guo YJ; Wang DY; Liang JM; Liu J; Yuan SS; Fan W; Wang XK; She ZD
    Zhonghua Shao Shang Za Zhi; 2021 Oct; 37(10):959-969. PubMed ID: 34689466
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.