These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35490209)

  • 1. Assessment of the mental workload of trainee pilots of remotely operated aircraft using functional near-infrared spectroscopy.
    Tang L; Si J; Sun L; Mao G; Yu S
    BMC Neurol; 2022 Apr; 22(1):160. PubMed ID: 35490209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using near infrared spectroscopy and heart rate variability to detect mental overload.
    Durantin G; Gagnon JF; Tremblay S; Dehais F
    Behav Brain Res; 2014 Feb; 259():16-23. PubMed ID: 24184083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of age, mental workload, and flight experience on cognitive performance and prefrontal activity in private pilots: a fNIRS study.
    Causse M; Chua ZK; Rémy F
    Sci Rep; 2019 May; 9(1):7688. PubMed ID: 31118436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilots' mental workload variation when taking a risk in a flight scenario: a study based on flight simulator experiments.
    Wang L; Gao S; Tan W; Zhang J
    Int J Occup Saf Ergon; 2023 Mar; 29(1):366-375. PubMed ID: 35236244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions.
    Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC
    Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS.
    Causse M; Chua Z; Peysakhovich V; Del Campo N; Matton N
    Sci Rep; 2017 Jul; 7(1):5222. PubMed ID: 28701789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How a pilot's brain copes with stress and mental load? Insights from the executive control network.
    Causse M; Mouratille D; Rouillard Y; El Yagoubi R; Matton N; Hidalgo-Muñoz A
    Behav Brain Res; 2024 Jan; 456():114698. PubMed ID: 37797721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.
    Sun J; Cheng S; Ma J; Xiong K; Su M; Hu W
    PLoS One; 2019; 14(3):e0214277. PubMed ID: 30921375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilots' mental workload prediction based on timeline analysis.
    Liu C; Wanyan X; Xiao X; Zhao J; Duan Y
    Technol Health Care; 2020; 28(S1):207-216. PubMed ID: 32364153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual Scanning Techniques and Mental Workload of Helicopter Pilots During Simulated Flight.
    Rainieri G; Fraboni F; Russo G; Tul M; Pingitore A; Tessari A; Pietrantoni L
    Aerosp Med Hum Perform; 2021 Jan; 92(1):11-19. PubMed ID: 33357267
    [No Abstract]   [Full Text] [Related]  

  • 11. Test Pilot and Airline Pilot Differences in Facing Unexpected Events.
    Zheng Y; Lu Y; Jie Y; Zhao Z; Fu S
    Aerosp Med Hum Perform; 2023 Jan; 94(1):18-24. PubMed ID: 36757229
    [No Abstract]   [Full Text] [Related]  

  • 12. Measured effects of workload and auditory feedback on remote pilot task performance.
    Dunn MJM; Molesworth BRC; Koo T; Lodewijks G
    Ergonomics; 2022 Jun; 65(6):886-898. PubMed ID: 34743680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot mental workload: how well do pilots really perform?
    Morris CH; Leung YK
    Ergonomics; 2006 Dec; 49(15):1581-96. PubMed ID: 17090505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time state estimation in a flight simulator using fNIRS.
    Gateau T; Durantin G; Lancelot F; Scannella S; Dehais F
    PLoS One; 2015; 10(3):e0121279. PubMed ID: 25816347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Mental Workload Estimation.
    Samima S; Sarma M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5605-5608. PubMed ID: 31947126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using machine learning methods and EEG to discriminate aircraft pilot cognitive workload during flight.
    Taheri Gorji H; Wilson N; VanBree J; Hoffmann B; Petros T; Tavakolian K
    Sci Rep; 2023 Feb; 13(1):2507. PubMed ID: 36782004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological effects of night vision goggle counterweights on neck musculature of military helicopter pilots.
    Harrison MF; Neary JP; Albert WJ; Veillette MD; Forcest C; McKenzie NP; Croll JC
    Mil Med; 2007 Aug; 172(8):864-70. PubMed ID: 17803080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning.
    Cao J; Garro EM; Zhao Y
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The psychophysiological assessment method for pilot's professional reliability.
    Zhang LM; Yu LS; Wang KN; Jing BS; Fang C
    Aviat Space Environ Med; 1997 May; 68(5):368-72. PubMed ID: 9143744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Ocular and Physiological Metrics to Discriminate Flight Phases in Real Light Aircraft.
    Scannella S; Peysakhovich V; Ehrig F; Lepron E; Dehais F
    Hum Factors; 2018 Nov; 60(7):922-935. PubMed ID: 30044142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.