These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35490278)

  • 1. Large-scale evaluation of physical drift and volatility of 2,4-D choline in cotton: a four-year field study.
    Hwang JI; Norsworthy JK; Houston MM; Piveta LB; Priess GL; Zaccaro-Gruener ML; Barber LT; Butts TR
    Pest Manag Sci; 2022 Aug; 78(8):3337-3344. PubMed ID: 35490278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormesis of 2,4-D choline salt in productive aspects of cotton.
    Marques RF; Araújo PPS; Pinheiro GHR; Souza RM; Martins D; Marchi SR
    J Environ Sci Health B; 2021; 56(11):977-985. PubMed ID: 34709963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of dicamba volatilization when mixed with glyphosate using imazethapyr as a tracer.
    Zaccaro-Gruener ML; Norsworthy JK; Brabham CB; Barber LT; Butts TR; Roberts TL; Mauromoustakos A
    J Environ Manage; 2022 Sep; 317():115303. PubMed ID: 35613534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink(®) and WideStrike(®) cotton.
    Carbonari CA; Latorre DO; Gomes GL; Velini ED; Owens DK; Pan Z; Dayan FE
    Planta; 2016 Apr; 243(4):925-33. PubMed ID: 26733464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift.
    Vieira BC; Luck JD; Amundsen KL; Gaines TA; Werle R; Kruger GR
    PLoS One; 2019; 14(7):e0220014. PubMed ID: 31318947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herbicide resistance evolution can be tamed by diversity in irrigated Australian cotton: a multi-species, multi-herbicide modelling approach.
    Thornby D; Werth J; Hereward J; Keenan M; Chauhan BS
    Pest Manag Sci; 2018 Oct; 74(10):2363-2375. PubMed ID: 29542257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional safety of herbicide-tolerant DAS-81910-7 cotton.
    Herman RA; Fast BJ; Johnson TY; Sabbatini J; Rudgers GW
    J Agric Food Chem; 2013 Nov; 61(47):11683-92. PubMed ID: 24147981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.
    Krutz LJ; Locke MA; Steinriede RW
    J Environ Qual; 2009; 38(3):1240-7. PubMed ID: 19398522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.
    Duke SO
    Pest Manag Sci; 2015 May; 71(5):652-7. PubMed ID: 25052888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weeds and ground-dwelling predators' response to two different weed management systems in glyphosate-tolerant cotton: A farm-scale study.
    García-Ruiz E; Loureiro Í; Farinós GP; Gómez P; Gutiérrez E; Sánchez FJ; Escorial MC; Ortego F; Chueca MC; Castañera P
    PLoS One; 2018; 13(1):e0191408. PubMed ID: 29351549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops.
    Hassink J; Platz K; Stadler R; Zangmeister W; Fent G; Möndel M; Kubiak R
    Pest Manag Sci; 2007 Feb; 63(2):171-9. PubMed ID: 17154244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyphosate-resistant crops: adoption, use and future considerations.
    Dill GM; Cajacob CA; Padgette SR
    Pest Manag Sci; 2008 Apr; 64(4):326-31. PubMed ID: 18078304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study.
    Perkins DB; Abi-Akar F; Goodwin G; Brain RA
    Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying vapor drift of dicamba herbicides applied to soybean.
    Egan JF; Mortensen DA
    Environ Toxicol Chem; 2012 May; 31(5):1023-31. PubMed ID: 22362509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of environmental factors that influence the likelihood of off-target movement of dicamba.
    Oseland E; Bish M; Steckel L; Bradley K
    Pest Manag Sci; 2020 Sep; 76(9):3282-3291. PubMed ID: 32385969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,4-D herbicides pose threat to cotton and other susceptible crops.
    HUTCHINS RE
    Science; 1953 Dec; 118(3078):782-3. PubMed ID: 13122021
    [No Abstract]   [Full Text] [Related]  

  • 17. Taking stock of herbicide-resistant crops ten years after introduction.
    Duke SO
    Pest Manag Sci; 2005 Mar; 61(3):211-8. PubMed ID: 15660452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.
    Brookes G
    GM Crops Food; 2014; 5(4):321-32. PubMed ID: 25523177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanized and natural soil-to-air transfer of trifluralin and prometryn from a cotton field in Las Cruces, New Mexico.
    Holmén BA; Kasumba J; Hiscox A; Wang J; Miller D
    J Agric Food Chem; 2013 Oct; 61(41):9776-83. PubMed ID: 24040758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle drift simulation from mesotrione and rimsulfuron plus thifensulfuron-methyl mixture through two nozzle types to field and vegetable crops.
    Brankov M; Alves GS; Vieira BC; Zaric M; Vukoja B; Houston T; Kruger GR
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38226-38238. PubMed ID: 36580245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.