BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 35490530)

  • 1. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the head of a TrueBeam linear particle accelerator and calculating the photoneutron spectrum on the central axis of a 10-MV photon using particle and heavy-ion transport system code.
    Quoc SD; Fujibuchi T; Arakawa H; Hamada K
    Radiat Prot Dosimetry; 2024 Jun; 200(8):779-790. PubMed ID: 38767288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TOPAS simulation of photoneutrons in radiotherapy: accuracy and speed with variance reduction.
    Ramos-Mendez J; Ortiz CR; Schuemann J; Paganetti H; Faddegon B
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657630
    [No Abstract]   [Full Text] [Related]  

  • 4. High-density polyethylene (HDPE)-incorporated boron carbide and boric acid nanoparticles as a nanoshield of photoneutrons from medical linear accelerators.
    Vegari A; Abdisaray A; Mostafanejad K; Jabbari N
    Int J Radiat Biol; 2024; 100(4):609-618. PubMed ID: 38190436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators.
    Howell RM; Kry SF; Burgett E; Hertel NE; Followill DS
    Med Phys; 2009 Sep; 36(9):4027-38. PubMed ID: 19810475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron shielding assessment of a
    Ounoughi N; Boukhellout A; Kharfi F
    J Radiol Prot; 2023 Jan; 43(1):. PubMed ID: 36599152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safe bunker designing for the 18 MV Varian 2100 Clinac: a comparison between Monte Carlo simulation based upon data and new protocol recommendations.
    Beigi M; Afarande F; Ghiasi H
    Rep Pract Oncol Radiother; 2016; 21(1):42-9. PubMed ID: 26900357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition Metal Borides for All-in-One Radiation Shielding.
    Avcıoğlu C; Avcıoğlu S
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of neutron shielding and activation performances of four types of concrete for carbon ion therapy facility.
    Yang Y; Ma F; Zhou X; Li W; Su Y; Xu C; Jiang B
    Appl Radiat Isot; 2024 Apr; 206():111233. PubMed ID: 38340532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakthrough electroneutron multi-response miniature dosimetry/spectrometry in medical accelerator.
    Sohrabi M; Malekitakbolagh M; Nedaei HA
    Sci Rep; 2024 Apr; 14(1):9557. PubMed ID: 38664481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geant4 Simulation of Photon- and Neutron-Shielding Capabilities of Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate).
    Akhdar H; Alshehri M
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation Shielding efficiency of lead-tungsten-boron glasses with Sb, Al, and Bi against gamma, neutron and charge particles.
    Katubi KM; Alsulami RA; Albarqi MM; Alrowaili ZA; Kebaili I; Singh VP; Al-Buriahi MS
    Appl Radiat Isot; 2024 Feb; 204():111139. PubMed ID: 38104471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy.
    Bahreyni Toossi MT; Khajetash B; Ghorbani M
    J Biomed Phys Eng; 2018 Mar; 8(1):3-12. PubMed ID: 29732336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe-nanoparticle effect on polypropylene for effective radiation protection: Simulation and theoretical study.
    Alshipli M; Aladailah MW; Marashdeh MW; Oglat AA; Akhdar H; Tashlykov OL; Banat R; Walaa AT
    Med Eng Phys; 2023 Nov; 121():104066. PubMed ID: 37985023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive study of the shielding ability from ionizing radiation of different mortars using iron filings and bismuth oxide.
    Al-Saleh WM; Elsafi M; Almutairi HM; Nabil IM; El-Nahal MA
    Sci Rep; 2024 May; 14(1):10014. PubMed ID: 38693293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo model of the Dingo thermal neutron imaging beamline.
    Jakubowski K; Chacon A; Tran LT; Stopic A; Garbe U; Bevitt J; Olsen S; Franklin DR; Rosenfeld A; Guatelli S; Safavi-Naeini M
    Sci Rep; 2023 Oct; 13(1):17415. PubMed ID: 37833371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Monte Carlo study on the impact of indirect action on neutron relative biological effectiveness.
    Manalad J; Montgomery L; Kildea J
    Radiat Prot Dosimetry; 2023 Oct; 199(15-16):1917-1921. PubMed ID: 37819307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement on the neutron and gamma radiation shielding performance of boron-doped titanium alloy Ti
    Kursun C; Gao M; Guclu S; Gaylan Y; Parrey KA; Yalcin AO
    Heliyon; 2023 Nov; 9(11):e21696. PubMed ID: 37954312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance of an epithermal neutron detector based on PFN.
    Yang Y; Zhang X; Zhang Y; Tang B; Qu J; Qiu J; Fu C; Wang G
    Appl Radiat Isot; 2024 May; 210():111369. PubMed ID: 38805983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy-ions shielding data for hadrontherapy application with Monte Carlo methods.
    Bonforte F; Ferrarini M; D'Angola A; Giroletti E; Introini D
    Radiat Prot Dosimetry; 2023 Oct; 199(17):2061-2075. PubMed ID: 37494453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.