BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 35490852)

  • 1. MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network.
    Yuan S; Gong Y; Wang G; Zhang B; Liu Y; Zhang H
    Methods; 2022 Aug; 204():368-375. PubMed ID: 35490852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATTfold: RNA Secondary Structure Prediction With Pseudoknots Based on Attention Mechanism.
    Wang Y; Liu Y; Wang S; Liu Z; Gao Y; Zhang H; Dong L
    Front Genet; 2020; 11():612086. PubMed ID: 33384721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks.
    Rajabi MM; Komeilian P; Wan X; Farmani R
    Water Res; 2023 Jun; 238():120012. PubMed ID: 37150062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised breast cancer prediction using integrated dimensionality reduction convolutional neural network.
    Xu H; Shao X; Hui S; Jin L
    PLoS One; 2023; 18(5):e0282350. PubMed ID: 37146014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DMfold: A Novel Method to Predict RNA Secondary Structure With Pseudoknots Based on Deep Learning and Improved Base Pair Maximization Principle.
    Wang L; Liu Y; Zhong X; Liu H; Lu C; Li C; Zhang H
    Front Genet; 2019; 10():143. PubMed ID: 30886627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Sports Training Performance Prediction Model Based on a Generative Adversarial Deep Neural Network Algorithm.
    Li G
    Comput Intell Neurosci; 2022; 2022():1211238. PubMed ID: 35637721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TransUFold: Unlocking the structural complexity of short and long RNA with pseudoknots.
    Wang Y; Zhang H; Xu Z; Zhang S; Guo R
    Math Biosci Eng; 2023 Oct; 20(11):19320-19340. PubMed ID: 38052602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Method of RNA Secondary Structure Prediction Based on Convolutional Neural Network and Dynamic Programming.
    Zhang H; Zhang C; Li Z; Li C; Wei X; Zhang B; Liu Y
    Front Genet; 2019; 10():467. PubMed ID: 31191603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein secondary structure prediction based on Wasserstein generative adversarial networks and temporal convolutional networks with convolutional block attention modules.
    Yuan L; Ma Y; Liu Y
    Math Biosci Eng; 2023 Jan; 20(2):2203-2218. PubMed ID: 36899529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REDfold: accurate RNA secondary structure prediction using residual encoder-decoder network.
    Chen CC; Chan YM
    BMC Bioinformatics; 2023 Mar; 24(1):122. PubMed ID: 36977986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on RNA secondary structure predicting via bidirectional recurrent neural network.
    Lu W; Cao Y; Wu H; Ding Y; Song Z; Zhang Y; Fu Q; Li H
    BMC Bioinformatics; 2021 Sep; 22(Suppl 3):431. PubMed ID: 34496763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein secondary structure based on an improved channel attention and multiscale convolution module.
    Jin X; Guo L; Jiang Q; Wu N; Yao S
    Front Bioeng Biotechnol; 2022; 10():901018. PubMed ID: 35935483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of RNA secondary structure with pseudoknots using integer programming.
    Poolsap U; Kato Y; Akutsu T
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S38. PubMed ID: 19208139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Bioinformatics; 2004 Jan; 20(1):58-66. PubMed ID: 14693809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Conditional Generative Adversarial Network and Transfer Learning-Oriented Anomaly Classification System for Electrospun Nanofibers.
    Ieracitano C; Mammone N; Paviglianiti A; Morabito FC
    Int J Neural Syst; 2022 Dec; 32(12):2250054. PubMed ID: 36240199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DermoCC-GAN: A new approach for standardizing dermatological images using generative adversarial networks.
    Salvi M; Branciforti F; Veronese F; Zavattaro E; Tarantino V; Savoia P; Meiburger KM
    Comput Methods Programs Biomed; 2022 Oct; 225():107040. PubMed ID: 35932723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.