These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35491186)

  • 1. Advances in Preparation of Peptide and Protein Thioesters Aiming to Use in Medicinal Sciences.
    Denda M; Otaka A
    Chem Pharm Bull (Tokyo); 2022; 70(5):316-323. PubMed ID: 35491186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of peptide thioesters from naturally occurring sequences using reaction sequence consisting of regioselective S-cyanylation and hydrazinolysis.
    Miyajima R; Tsuda Y; Inokuma T; Shigenaga A; Imanishi M; Futaki S; Otaka A
    Biopolymers; 2016 Nov; 106(4):531-46. PubMed ID: 26501985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-Independent Traceless Method for Preparation of Peptide/Protein Thioesters Using CPaseY-Mediated Hydrazinolysis.
    Ueda M; Komiya C; Arii S; Kusumoto K; Denda M; Okuhira K; Shigenaga A; Otaka A
    Chem Pharm Bull (Tokyo); 2020 Dec; 68(12):1226-1232. PubMed ID: 33028801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-derived s-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters.
    Ohta Y; Itoh S; Shigenaga A; Shintaku S; Fujii N; Otaka A
    Org Lett; 2006 Feb; 8(3):467-70. PubMed ID: 16435861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging the Knorr Pyrazole Synthesis for the Facile Generation of Thioester Surrogates for use in Native Chemical Ligation.
    Flood DT; Hintzen JCJ; Bird MJ; Cistrone PA; Chen JS; Dawson PE
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11634-11639. PubMed ID: 29908104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency.
    Agouridas V; Ollivier N; Vicogne J; Diemer V; Melnyk O
    Acc Chem Res; 2022 Sep; 55(18):2685-2697. PubMed ID: 36083810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Shortcut to the Synthesis of Peptide Thioesters.
    Raz R; Offer J
    Methods Mol Biol; 2021; 2208():1-12. PubMed ID: 32856252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput synthesis of peptide α-thioesters: a safety catch linker approach enabling parallel hydrogen fluoride cleavage.
    Brust A; Schroeder CI; Alewood PF
    ChemMedChem; 2014 May; 9(5):1038-46. PubMed ID: 24591329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-Chain Anchoring Strategies for the Synthesis of Peptide Thioesters and Selenoesters.
    Kambanis L; Kulkarni SS; Payne RJ
    Methods Mol Biol; 2022; 2530():125-140. PubMed ID: 35761046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Ligation and Labeling Enabled by a C-Terminal Tetracysteine Tag.
    Mo Z; Lin S; Chen W; He C
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202115377. PubMed ID: 35060269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.
    Sakamoto K; Sato K; Shigenaga A; Tsuji K; Tsuda S; Hibino H; Nishiuchi Y; Otaka A
    J Org Chem; 2012 Aug; 77(16):6948-58. PubMed ID: 22816612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the Semisynthesis towards glycosylated interferon-β-polypeptide by utilizing bacterial protein expression and chemical modification.
    Chong YK; Chandrashekar C; Zhao D; Maki Y; Okamoto R; Kajihara Y
    Org Biomol Chem; 2022 Mar; 20(9):1907-1915. PubMed ID: 35166741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native chemical ligation derived method for recombinant peptide/protein C-terminal amidation.
    Sun C; Luo G; Neravetla S; Ghosh SS; Forood B
    Bioorg Med Chem Lett; 2013 Sep; 23(18):5203-8. PubMed ID: 23880540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of thiazolidine thioester peptides and acceleration of native chemical ligation.
    Dheur J; Ollivier N; Melnyk O
    Org Lett; 2011 Mar; 13(6):1560-3. PubMed ID: 21348452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypeptide Preparation by β-Lactone-Mediated Chemical Ligation.
    Fan X; Wen Y; Chen H; Tian B; Zhang Q
    Org Lett; 2024 Jul; 26(26):5436-5440. PubMed ID: 38900935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traceless synthesis of protein thioesters using enzyme-mediated hydrazinolysis and subsequent self-editing of the cysteinyl prolyl sequence.
    Komiya C; Shigenaga A; Tsukimoto J; Ueda M; Morisaki T; Inokuma T; Itoh K; Otaka A
    Chem Commun (Camb); 2019 Jun; 55(49):7029-7032. PubMed ID: 31140482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation.
    Gui Y; Qiu L; Li Y; Li H; Dong S
    J Am Chem Soc; 2016 Apr; 138(14):4890-9. PubMed ID: 26982082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.