These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35491193)

  • 1. Monitoring and Predicting the Size of Fine Particles Prepared in a Fluidized-Bed Granulator Using a Handheld-Type Raman Spectrometer.
    Yamaguchi S; Hosaka S; Sugaya K; Tokunaga Y; Yokota S
    Chem Pharm Bull (Tokyo); 2022; 70(5):362-368. PubMed ID: 35491193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Fine Particles with Improved Solubility Using a Complex Fluidized-Bed Granulator Equipped with a Particle-Sizing Mechanism.
    Hosaka S; Okamura Y; Tokunaga Y
    Chem Pharm Bull (Tokyo); 2016; 64(6):644-9. PubMed ID: 27250799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of an artificial neural network as a PAT tool for the prediction of temperature distribution within a pharmaceutical fluidized bed granulator.
    Korteby Y; Mahdi Y; Azizou A; Daoud K; Regdon G
    Eur J Pharm Sci; 2016 Jun; 88():219-32. PubMed ID: 26993961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of dry powder inhalation with lactose carrier particles surface-coated using a Wurster fluidized bed.
    Iida K; Todo H; Okamoto H; Danjo K; Leuenberger H
    Chem Pharm Bull (Tokyo); 2005 Apr; 53(4):431-4. PubMed ID: 15802846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a fluidized bed hammer mill for size reduction and classification: effects of process variables and starting materials on the particle size distribution of milled lactose batches.
    Lee CC; Chan LW; Heng PW
    Pharm Dev Technol; 2003; 8(4):431-42. PubMed ID: 14601967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations.
    Marriott C; MacRitchie HB; Zeng XM; Martin GP
    Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of using different grades of PVP and gelatin as binders in the fluidized bed granulation and tabletting of lactose.
    Georgakopoulos PP; Malamataris S; Dolamidis G
    Pharmazie; 1983 Apr; 38(4):240-3. PubMed ID: 6867086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the lactose grade within dry powder formulations of fluticasone propionate and terbutaline sulphate.
    Le VN; Bierend H; Robins E; Steckel H; Flament MP
    Int J Pharm; 2012 Jan; 422(1-2):75-82. PubMed ID: 22036653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granulation of acetaminophen by a rotating fluidized-bed granulator.
    Kawaguchi T; Sunada H; Yonezawa Y; Danjo K; Hasegawa M; Makino T; Sakamoto H; Fujita K; Tanino T; Kokubo H
    Pharm Dev Technol; 2000; 5(2):141-51. PubMed ID: 10810744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving flow properties of ibuprofen by fluidized bed particle thin-coating.
    Ehlers H; Räikkönen H; Antikainen O; Heinämäki J; Yliruusi J
    Int J Pharm; 2009 Feb; 368(1-2):165-70. PubMed ID: 19010403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers.
    Lucas P; Anderson K; Staniforth JN
    Pharm Res; 1998 Apr; 15(4):562-9. PubMed ID: 9587952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.
    Shalash AO; Molokhia AM; Elsayed MM
    Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The utilization of surface free-energy parameters for the selection of a suitable binder in fluidized bed granulation.
    Planinsek O; Pisek R; Trojak A; Srcic S
    Int J Pharm; 2000 Oct; 207(1-2):77-88. PubMed ID: 11036233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design.
    Guenette E; Barrett A; Kraus D; Brody R; Harding L; Magee G
    Int J Pharm; 2009 Oct; 380(1-2):80-8. PubMed ID: 19596428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose.
    Tay JYS; Kok BWT; Liew CV; Heng PWS
    J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2010 Nov; 76(3):464-9. PubMed ID: 20854906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersibility of lactose fines as compared to API in dry powders for inhalation.
    Thalberg K; Åslund S; Skogevall M; Andersson P
    Int J Pharm; 2016 May; 504(1-2):27-38. PubMed ID: 26965200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spray granulation for drug formulation.
    Loh ZH; Er DZ; Chan LW; Liew CV; Heng PW
    Expert Opin Drug Deliv; 2011 Dec; 8(12):1645-61. PubMed ID: 22097906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of milling on the plastic and the elastic stiffness of lactose particles.
    Pazesh S; Persson AS; Berggren J; Alderborn G
    Eur J Pharm Sci; 2018 Mar; 114():138-145. PubMed ID: 29217203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.
    Sakwanichol J; Puttipipatkhachorn S; Ingenerf G; Kleinebudde P
    Pharm Dev Technol; 2012; 17(1):30-9. PubMed ID: 20731538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.