These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35491429)

  • 1. Direct and indirect role of Fe doping in NiOOH monolayer for water oxidation catalysis.
    Kumar M; Piccinin S; Srinivasan V
    Chemphyschem; 2022 Jul; 23(14):e202200085. PubMed ID: 35491429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly facet-dependent activity of iron-doped β-nickel oxyhydroxide for the oxygen evolution reaction.
    Govind Rajan A; Martirez JMP; Carter EA
    Phys Chem Chem Phys; 2024 May; 26(20):14721-14733. PubMed ID: 38716632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations.
    Costanzo F
    Phys Chem Chem Phys; 2016 Mar; 18(10):7490-501. PubMed ID: 26902752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multisite dynamic synergistic oxygen evolution reaction mechanism of Fe-doped NiOOH: a first-principles study.
    Chen H; Xie H; Li B; Pang J; Shi R; Yang C; Zhao N; He C; Chen B; Liu E
    Phys Chem Chem Phys; 2023 Dec; 25(48):32989-32999. PubMed ID: 38032048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials.
    Govind Rajan A; Martirez JMP; Carter EA
    J Am Chem Soc; 2020 Feb; 142(7):3600-3612. PubMed ID: 31961150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites.
    Martirez JMP; Carter EA
    J Am Chem Soc; 2019 Jan; 141(1):693-705. PubMed ID: 30543110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe-doping and oxygen vacancy achieved by electrochemical activation and precipitation/dissolution equilibrium in NiOOH for oxygen evolution reaction.
    Xie JY; Zhao J; Han JQ; Wang FL; Zhai XJ; Nan J; Wang ST; Chai YM; Dong B
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1588-1596. PubMed ID: 37666191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts.
    He ZD; Tesch R; Eslamibidgoli MJ; Eikerling MH; Kowalski PM
    Nat Commun; 2023 Jun; 14(1):3498. PubMed ID: 37311755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Electrochemical Rapid Induction of Highly Active γ-NiOOH Species for Industrial Anion Exchange Membrane Water Electrolyzer.
    Wang FL; Tan JL; Jin ZY; Gu CY; Lv QX; Dong YW; Lv RQ; Dong B; Chai YM
    Small; 2024 Apr; ():e2310064. PubMed ID: 38607265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH.
    Wu F; Wu B; Chen L; Wang Y; Li J; Zhang Q
    Nanoscale; 2024 Jul; 16(28):13694-13702. PubMed ID: 38967458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction.
    Xiao H; Shin H; Goddard WA
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5872-5877. PubMed ID: 29784794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The secret behind the success of doping nickel oxyhydroxide with iron.
    Fidelsky V; Toroker MC
    Phys Chem Chem Phys; 2017 Mar; 19(11):7491-7497. PubMed ID: 28197563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001).
    Tkalych AJ; Martirez JMP; Carter EA
    Phys Chem Chem Phys; 2018 Jul; 20(29):19525-19531. PubMed ID: 29999072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfurized NiFe
    Li X; Wang M; Fu J; Lu F; Li Z; Wang G
    Small; 2024 Jun; 20(23):e2310040. PubMed ID: 38150619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and Stabilization of NiOOH by Introducing α-FeOOH in LDH: Composite Electrocatalyst for Oxygen Evolution and Urea Oxidation Reactions.
    Cai M; Zhu Q; Wang X; Shao Z; Yao L; Zeng H; Wu X; Chen J; Huang K; Feng S
    Adv Mater; 2023 Feb; 35(7):e2209338. PubMed ID: 36401826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the d-Band States of Ni-Based Serpentine Materials via Fe
    Luo D; Yang B; Mei Z; Kang Q; Chen G; Liu X; Zhang N
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52857-52867. PubMed ID: 36383731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density Functional Theory Study of NiFeCo Trinary Oxy-Hydroxides for an Efficient and Stable Oxygen Evolution Reaction Catalyst.
    Ullah H; Loh A; Trudgeon DP; Li X
    ACS Omega; 2020 Aug; 5(32):20517-20524. PubMed ID: 32832804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of Mars-Van-Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni-Based Catalysts.
    Ferreira de Araújo J; Dionigi F; Merzdorf T; Oh HS; Strasser P
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):14981-14988. PubMed ID: 33830603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation.
    Du J; You S; Li X; Tang B; Jiang B; Yu Y; Cai Z; Ren N; Zou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):686-697. PubMed ID: 31825209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.