These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35492167)

  • 41. Cellulose Structural Changes during Mild Torrefaction of
    Lourenço A; Araújo S; Gominho J; Evtuguin D
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermoplastic "All-Cellulose" Composites with Covalently Attached Carbonized Cellulose.
    Gustavsson LH; Adolfsson KH; Hakkarainen M
    Biomacromolecules; 2020 May; 21(5):1752-1761. PubMed ID: 32049502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: extinction spectra and dynamics.
    Walsh AJ; Ruth AA; Gash EW; Mansfield MW
    J Chem Phys; 2013 Aug; 139(5):054304. PubMed ID: 23927259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles.
    Babinszki B; Sebestyén Z; Jakab E; Kőhalmi L; Bozi J; Várhegyi G; Wang L; Skreiberg Ø; Czégény Z
    Bioresour Technol; 2021 Oct; 338():125567. PubMed ID: 34303140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of process water quality on hydrothermal carbonization of cellulose.
    Lu X; Flora JR; Berge ND
    Bioresour Technol; 2014 Feb; 154():229-39. PubMed ID: 24398151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distribution and toxicity of polycyclic aromatic hydrocarbons during CaO-assisted hydrothermal carbonization of sewage sludge.
    Liu T; Tian L; Liu Z; He J; Fu H; Huang Q; Xue H; Huang Z
    Waste Manag; 2021 Feb; 120():616-625. PubMed ID: 33218926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unexpected solvent effects on the UV/Vis absorption spectra of
    Zheng D; Yuan XA; Ma H; Li X; Wang X; Liu Z; Ma J
    R Soc Open Sci; 2018 Mar; 5(3):171928. PubMed ID: 29657794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.
    Lu X; Berge ND
    Bioresour Technol; 2014 Aug; 166():120-31. PubMed ID: 24907571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS (13)C NMR study.
    Davies LM; Harris PJ; Newman RH
    Carbohydr Res; 2002 Apr; 337(7):587-93. PubMed ID: 11909591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multifunctional finishing of cotton with 3,3',4,4'-benzophenone tetracarboxylic acid: functional performance.
    Hou A; Sun G
    Carbohydr Polym; 2013 Jul; 96(2):435-9. PubMed ID: 23768584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies.
    Wang S; Guo X; Liang T; Zhou Y; Luo Z
    Bioresour Technol; 2012 Jan; 104():722-8. PubMed ID: 22100230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. From food waste and its digestate to nitrogen self-doped char and methane-rich syngas: Evolution of pyrolysis products during autogenic pressure carbonization.
    Peng W; Zhang H; Lü F; Shao L; He P
    J Hazard Mater; 2022 Feb; 424(Pt A):127249. PubMed ID: 34600375
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developmental changes in collenchyma cell-wall polysaccharides in celery (Apium graveolens L.) petioles.
    Chen D; Melton LD; Zujovic Z; Harris PJ
    BMC Plant Biol; 2019 Feb; 19(1):81. PubMed ID: 30782133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tuning the Properties of Iron-Doped Porous Graphitic Carbon Synthesized by Hydrothermal Carbonization of Cellulose and Subsequent Pyrolysis.
    Lotz K; Wütscher A; Düdder H; Berger CM; Russo C; Mukherjee K; Schwaab G; Havenith M; Muhler M
    ACS Omega; 2019 Feb; 4(2):4448-4460. PubMed ID: 31459640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sorption of organic compounds by pyrolyzed humic acids.
    Yang K; Yan X; Xu J; Jiang L; Wu W
    Sci Total Environ; 2021 Aug; 781():146646. PubMed ID: 33794451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance.
    Wang T; Park YB; Cosgrove DJ; Hong M
    Plant Physiol; 2015 Jul; 168(3):871-84. PubMed ID: 26036615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.
    González-Vila FJ; Tinoco P; Almendros G; Martin F
    J Agric Food Chem; 2001 Mar; 49(3):1128-31. PubMed ID: 11312823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose.
    Bi D; Huang F; Jiang M; He Z; Lin X
    Sci Total Environ; 2022 Jan; 805():150339. PubMed ID: 34537697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrolysis of Porous Organic Polymers under a Chlorine Atmosphere to Produce Heteroatom-Doped Microporous Carbons.
    Kiciński W; Dyjak S; Gratzke M
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34203962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.