These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35492560)
1. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. Qi X; Li Y; Wei L; Hao F; Zhu X; Wei Y; Li K; Wang H RSC Adv; 2019 Dec; 10(1):29-42. PubMed ID: 35492560 [TBL] [Abstract][Full Text] [Related]
2. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator. Cai G; Zhu X; Li K; Qi X; Wei Y; Wang H; Hao F Water Res; 2019 Jun; 157():269-280. PubMed ID: 30959330 [TBL] [Abstract][Full Text] [Related]
3. Alternative Method for the Treatment of Hydrometallurgical Arsenic-Calcium Residues: The Immobilization of Arsenic as Scorodite. Ma X; Yuan Z; Zhang G; Zhang J; Wang X; Wang S; Jia Y ACS Omega; 2020 Jun; 5(22):12979-12988. PubMed ID: 32548482 [TBL] [Abstract][Full Text] [Related]
4. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source. Tang Z; Tang X; Liu H; Xiao Z Chemosphere; 2023 Oct; 339():139751. PubMed ID: 37557998 [TBL] [Abstract][Full Text] [Related]
5. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process. Jahromi FG; Ghahreman A J Hazard Mater; 2018 Oct; 360():631-638. PubMed ID: 30153628 [TBL] [Abstract][Full Text] [Related]
6. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags. Zhang X; Sun Y; Ma Y; Ji W; Ren Y Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145 [TBL] [Abstract][Full Text] [Related]
7. Mechanism and thermodynamics of scorodite formation by oxidative precipitation from arsenic-bearing solution. Tang Z; Tang X; Xiao Z; Liu H Environ Res; 2024 Jun; 250():118500. PubMed ID: 38387492 [TBL] [Abstract][Full Text] [Related]
8. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate. Chen P; Zhao Y; Yao J; Zhu J; Cao J Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065 [TBL] [Abstract][Full Text] [Related]
9. Reclamation of an arsenic-bearing gypsum via acid washing and CaO-As stabilization involving svabite formation in thermal treatment. Yang D; Sasaki A; Endo M J Environ Manage; 2019 Feb; 231():811-818. PubMed ID: 30419436 [TBL] [Abstract][Full Text] [Related]
10. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal. González-Contreras P; Weijma J; Buisman CJ Water Res; 2012 Nov; 46(18):5883-92. PubMed ID: 22960037 [TBL] [Abstract][Full Text] [Related]
11. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge. Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660 [TBL] [Abstract][Full Text] [Related]
12. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution. Ma X; Yao S; Yuan Z; Bi R; Wu X; Zhang J; Wang S; Wang X; Jia Y Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149 [TBL] [Abstract][Full Text] [Related]
13. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral. Li Y; Qi X; Li G; Duan X; Yang N Chemosphere; 2022 Aug; 301():134736. PubMed ID: 35500627 [TBL] [Abstract][Full Text] [Related]
14. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization. Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427 [TBL] [Abstract][Full Text] [Related]
15. Hydrothermal treatment of arsenic sulfide slag to immobilize arsenic into scorodite and recycle sulfur. Zhang W; Lu H; Liu F; Wang C; Zhang Z; Zhang J J Hazard Mater; 2021 Mar; 406():124735. PubMed ID: 33296758 [TBL] [Abstract][Full Text] [Related]
16. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals. Raghav M; Shan J; Sáez AE; Ela WP J Hazard Mater; 2013 Dec; 263 Pt 2(0 2):525-32. PubMed ID: 24231323 [TBL] [Abstract][Full Text] [Related]
17. The effect of precursor speciation on the growth of scorodite in an atmospheric scorodite synthesis. Rong Z; Tang X; Wu L; Chen X; Dang W; Li X; Huang L; Wang Y R Soc Open Sci; 2020 Jan; 7(1):191619. PubMed ID: 32218981 [TBL] [Abstract][Full Text] [Related]
18. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal. Gonzalez-Contreras P; Weijma J; van der Weijden R; Buisman CJ Environ Sci Technol; 2010 Jan; 44(2):675-80. PubMed ID: 20017476 [TBL] [Abstract][Full Text] [Related]
19. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum. Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651 [TBL] [Abstract][Full Text] [Related]
20. Enhanced extraction of heavy metals from gypsum-based hazardous waste by nanoscale sulfuric acid film at ambient conditions. Li W; Wang C; Che G; Su M; Zhang Z; Liu W; Lin Z; Zhang J J Hazard Mater; 2024 May; 469():134027. PubMed ID: 38508110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]