BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35492654)

  • 1. Effect of different pyrolysis temperatures on physico-chemical characteristics and lead(ii) removal of biochar derived from chicken manure.
    Cuixia Y; Yingming X; Lin W; Xuefeng L; Yuebing S; Hongtao J
    RSC Adv; 2020 Jan; 10(7):3667-3674. PubMed ID: 35492654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced adsorption of Pb(II) by phosphorus-modified chicken manure and Chinese medicine residue co-pyrolysis biochar.
    Chen X; Zhu X; Fan G; Wang X; Li H; Li H; Xu X
    Microsc Res Tech; 2022 Nov; 85(11):3589-3599. PubMed ID: 35869784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption Behavior and Relative Distribution of Cd
    Huang F; Zhang L; Wu RR; Zhang SM; Xiao RB
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32131442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures.
    Chen Z; Liu T; Tang J; Zheng Z; Wang H; Shao Q; Chen G; Li Z; Chen Y; Zhu J; Feng T
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11854-11866. PubMed ID: 29446021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution.
    Dong J; Shen L; Shan S; Liu W; Qi Z; Liu C; Gao X
    Sci Total Environ; 2022 Feb; 806(Pt 4):151442. PubMed ID: 34742966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution.
    Tan Y; Wan X; Zhou T; Wang L; Yin X; Ma A; Wang N
    J Hazard Mater; 2022 Feb; 424(Pt A):127349. PubMed ID: 34879556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative contribution of Cd
    Huang F; Gao LY; Deng JH; Chen SH; Cai KZ
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28322-28334. PubMed ID: 30083897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption characteristics and mechanisms of Pb
    Wang T; Zheng J; Liu H; Peng Q; Zhou H; Zhang X
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13800-13818. PubMed ID: 33191469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on Pb
    Zhang W; Du W; Wang F; Xu H; Zhao T; Zhang H; Ding Y; Zhu W
    Sci Total Environ; 2020 May; 716():137108. PubMed ID: 32059306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system.
    Liu L; Huang Y; Zhang S; Gong Y; Su Y; Cao J; Hu H
    Waste Manag; 2019 Dec; 100():287-295. PubMed ID: 31568977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the adsorption capacity and mechanisms of mixed heavy metals in wastewater by sheep manure biochar and Robinia pseudoacacia biochar.
    Wang S; Li X; Zhu Y
    Water Sci Technol; 2023 Jun; 87(12):3083-3094. PubMed ID: 37387432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
    Ding W; Dong X; Ime IM; Gao B; Ma LQ
    Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of carbonization temperature on the capacity and mechanisms of Pb(II) adsorption by microalgae residue-derived biochar.
    Yang Z; Hou J; Wu J; Miao L
    Ecotoxicol Environ Saf; 2021 Dec; 225():112750. PubMed ID: 34530264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar.
    Zhu Y; Yi B; Yuan Q; Wu Y; Wang M; Yan S
    RSC Adv; 2018 May; 8(36):19917-19929. PubMed ID: 35541638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency removal of Pb(ii) in aqueous solution by a biochar-supported nanoscale ferrous sulfide composite.
    Chen C; Qiu M
    RSC Adv; 2020 Dec; 11(2):953-959. PubMed ID: 35423700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds.
    Ahmed W; Mehmood S; Núñez-Delgado A; Ali S; Qaswar M; Shakoor A; Mahmood M; Chen DY
    Sci Total Environ; 2021 Aug; 784():147136. PubMed ID: 33892324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of pyrolysis temperature and activation on oily sludge-derived char for Pb(II) and Cd(II) removal from aqueous solution.
    Tian Y; Li J; McGill WB; Whitcombe TW
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5532-5547. PubMed ID: 32968903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass.
    Zhao B; Xu X; Zhang R; Cui M
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16408-16419. PubMed ID: 33387322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead (Pb
    Rajput S; Singh LP; Pittman CU; Mohan D
    J Colloid Interface Sci; 2017 Apr; 492():176-190. PubMed ID: 28088081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.