These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 35492789)

  • 1. The Edge Stresses and Phase Transitions for Magnetic BN Zigzag Nanoribbons.
    Deng J; Yin Y; Niu H; Ding X; Sun J; Medhekar NV
    Sci Rep; 2017 Aug; 7(1):7855. PubMed ID: 28798346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically induced net magnetization in FePSe
    Zhang W; Xie W; Shao B; Zuo X
    Nanoscale; 2023 Dec; 15(48):19598-19603. PubMed ID: 38018324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons.
    Ye Q; Tang S; Du Y; Liu Z; Wu Q; Xiao X
    J Phys Condens Matter; 2024 Jun; 36(36):. PubMed ID: 38830373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metal atomic substitution induced half-metallic properties, metallic properties and semiconducting properties in X-N
    Fan D; Wang Z; Yin M; Li H; Hu H; Guo F; Feng Z; Li J; Zhang D; Li Z; Zhu M
    Phys Chem Chem Phys; 2023 Nov; 25(45):31257-31269. PubMed ID: 37955269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge Magnetism in MoS
    Castenetto P; Lambin P; Vancsó P
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38132984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Electronic and Magnetic Properties of Graphene Flake Embedded in Boron Nitride Nanoribbons with Transverse Electric Fields: First-Principles Calculations.
    Guan Z; Ni S; Hu S
    ACS Omega; 2019 Jun; 4(6):10293-10300. PubMed ID: 31460121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of multiple band gap values in single width nanoribbons.
    Deepika ; Kumar S; Shukla A; Kumar R
    Sci Rep; 2016 Nov; 6():36168. PubMed ID: 27808172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High optical spin-filtering in antiferromagnetic stanene nanoribbons induced by band bending and uniaxial strain.
    Rahimi F; Phirouznia A
    Sci Rep; 2023 Aug; 13(1):12874. PubMed ID: 37553395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rectifying Performance of Heterojunction Based on α-Borophene Nanoribbons with Edge Passivation.
    Yu G; Ding W; Xiao X; Li X; Zhou G
    Nanoscale Res Lett; 2020 Sep; 15(1):185. PubMed ID: 32970277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable H-Terminated Edges, Variable Semiconducting Properties, and Solar Cell Applications of C
    Ding Y; Wang Y
    ACS Omega; 2018 Aug; 3(8):8777-8786. PubMed ID: 31459010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.
    Xu Y; Uddin S; Wang J; Wu J; Liu JF
    Sci Rep; 2017 Aug; 7(1):7578. PubMed ID: 28790421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of water on gold supported chiral graphene nanoribbons: rupture of conjugation by an alternating hydrogenation pattern.
    Berdonces-Layunta A; Matěj A; Jiménez-Martín A; Lawrence J; Mohammed MSG; Wang T; Mallada B; de la Torre B; Martínez A; Vilas-Varela M; Nieman R; Lischka H; Nachtigallová D; Peña D; Jelínek P; de Oteyza DG
    Nanoscale; 2024 Jan; 16(2):734-741. PubMed ID: 38086686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin filtering controller induced by phase transitions in fluorographane.
    Sun C; Jiang Y; Wang Y; Liu XC; Wu Y; Ding Y; Zhang G
    RSC Adv; 2021 Nov; 11(57):35718-35725. PubMed ID: 35492789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT based investigations for the structural and electronic properties of coved zigzag BP nanoribbons.
    Nemu A; Jaiswal NK
    J Mol Graph Model; 2023 Jun; 121():108453. PubMed ID: 36940487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.
    Yao Y; Liu A; Bai J; Zhang X; Wang R
    Nanoscale Res Lett; 2016 Dec; 11(1):371. PubMed ID: 27550051
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.