These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35492905)

  • 21. Chemical imaging of Fischer-Tropsch catalysts under operating conditions.
    Price SW; Martin DJ; Parsons AD; Sławiński WA; Vamvakeros A; Keylock SJ; Beale AM; Mosselmans JF
    Sci Adv; 2017 Mar; 3(3):e1602838. PubMed ID: 28345057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.
    Falkenhagen JP; Maisonneuve L; Paalanen PP; Coste N; Malicki N; Weckhuysen BM
    Chemistry; 2018 Mar; 24(18):4597-4606. PubMed ID: 29493817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts.
    Ali S; Mohd Zabidi NA; Subbarao D
    Chem Cent J; 2011 Nov; 5():68. PubMed ID: 22047220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Plasma-Synthesized Nano-Catalysts for CO Hydrogenation in Low-Temperature Fischer⁻Tropsch Synthesis: Effect of Catalyst Pre-Treatment.
    Aluha J; Gutierrez S; Gitzhofer F; Abatzoglou N
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilizing Optimal Crystalline Facet of Cobalt Catalysts for Fischer-Tropsch Synthesis.
    Qin C; Hou B; Wang J; Wang G; Ma Z; Jia L; Li D
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33886-33893. PubMed ID: 31498584
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Liu QY; Shang C; Liu ZP
    J Phys Chem Lett; 2022 Apr; 13(15):3342-3352. PubMed ID: 35394796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.
    Cheng K; Zhang L; Kang J; Peng X; Zhang Q; Wang Y
    Chemistry; 2015 Jan; 21(5):1928-37. PubMed ID: 25424473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene Nanoflake- and Carbon Nanotube-Supported Iron-Potassium 3D-Catalysts for Hydrocarbon Synthesis from Syngas.
    Chernyak SA; Stolbov DN; Maslakov KI; Kazantsev RV; Eliseev OL; Moskovskikh DO; Savilov SV
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests.
    Comazzi A; Pirola C; Longhi M; Bianchi CL; Suslick KS
    Ultrason Sonochem; 2017 Jan; 34():774-780. PubMed ID: 27773304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO
    Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S
    Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Pyrolysis on iron-metal organic frameworks (MOFs) to Fe
    Munir S; Amin M; Iqbal N; Iqbal A; Ghfar AA
    Front Chem; 2023; 11():1150565. PubMed ID: 37113503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).
    de Smit E; Cinquini F; Beale AM; Safonova OV; van Beek W; Sautet P; Weckhuysen BM
    J Am Chem Soc; 2010 Oct; 132(42):14928-41. PubMed ID: 20925335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
    Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y
    Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.
    Meiri N; Dinburg Y; Amoyal M; Koukouliev V; Nehemya RV; Landau MV; Herskowitz M
    Faraday Discuss; 2015; 183():197-215. PubMed ID: 26444296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas.
    He J; Liu Z; Yoneyama Y; Nishiyama N; Tsubaki N
    Chemistry; 2006 Nov; 12(32):8296-304. PubMed ID: 16850512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying the Hydrogenation Activity of Zeolite Beta for Enhancing the Yield and Selectivity for Fuel-Range Alkanes from Carbon Dioxide.
    Dokania A; Ramirez A; Shterk G; Cerrillo JL; Gascon J
    Chempluschem; 2022 Jun; 87(6):e202200177. PubMed ID: 35695481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Liquid Hydrocarbon via Direct Hydrogenation of CO
    Li Z; Wang K; Xing Y; Song W; Gao X; Ma Q; Zhao T; Zhang J
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts.
    Xie J; Torres Galvis HM; Koeken AC; Kirilin A; Dugulan AI; Ruitenbeek M; de Jong KP
    ACS Catal; 2016 Jun; 6(6):4017-4024. PubMed ID: 27330847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ZrO
    Ge Y; Zou T; Martín AJ; Pérez-Ramírez J
    ACS Catal; 2023 Aug; 13(15):9946-9959. PubMed ID: 37560190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.