These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35493019)

  • 21. Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development.
    Lee HS; Lim YB
    ACS Nano; 2020 Mar; 14(3):3344-3352. PubMed ID: 32058708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers.
    Yang C; Chu L; Zhang Y; Shi Y; Liu J; Liu Q; Fan S; Yang Z; Ding D; Kong D; Liu J
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2735-44. PubMed ID: 25555064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-Selected C
    Hu T; Xu Y; Xu G; Pan S
    J Agric Food Chem; 2022 Jun; 70(23):7148-7157. PubMed ID: 35657010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics.
    Jeena MT; Jeong K; Go EM; Cho Y; Lee S; Jin S; Hwang SW; Jang JH; Kang CS; Bang WY; Lee E; Kwak SK; Kim S; Ryu JH
    ACS Nano; 2019 Oct; 13(10):11022-11033. PubMed ID: 31508938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-Linked Self-Assembling Peptides and Their Post-Assembly Functionalization via One-Pot and In Situ Gelation System.
    Pugliese R; Gelain F
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity.
    Xie YY; Qin XT; Zhang J; Sun MY; Wang FP; Huang M; Jia SR; Qi W; Wang Y; Zhong C
    J Colloid Interface Sci; 2022 Sep; 622():135-146. PubMed ID: 35490617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme-instructed self-assembly (EISA) assists the self-assembly and hydrogelation of hydrophobic peptides.
    Li X; Wang Y; Zhang Y; Yang Z; Gao J; Shi Y
    J Mater Chem B; 2022 May; 10(17):3242-3247. PubMed ID: 35437539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From short peptides to nanofibers to macromolecular assemblies in biomedicine.
    Loo Y; Zhang S; Hauser CA
    Biotechnol Adv; 2012; 30(3):593-603. PubMed ID: 22041166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supramolecular Tuning of H
    Qian Y; Kaur K; Foster JC; Matson JB
    Biomacromolecules; 2019 Feb; 20(2):1077-1086. PubMed ID: 30676716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering.
    Eskandari S; Guerin T; Toth I; Stephenson RJ
    Adv Drug Deliv Rev; 2017 Feb; 110-111():169-187. PubMed ID: 27356149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Narrowing the diversification of supramolecular assemblies by preorganization.
    Wang Z; Liang C; Shang Y; He S; Wang L; Yang Z
    Chem Commun (Camb); 2018 Mar; 54(22):2751-2754. PubMed ID: 29479604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger.
    Kaur H; Sharma P; Patel N; Pal VK; Roy S
    Langmuir; 2020 Oct; 36(41):12107-12120. PubMed ID: 32988205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell differentiation on disk- and string-shaped hydrogels fabricated from Ca(2+) -responsive self-assembling peptides.
    Fukunaga K; Tsutsumi H; Mihara H
    Biopolymers; 2016 Nov; 106(4):476-83. PubMed ID: 26501895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading.
    Galler KM; Aulisa L; Regan KR; D'Souza RN; Hartgerink JD
    J Am Chem Soc; 2010 Mar; 132(9):3217-23. PubMed ID: 20158218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triggering Supramolecular Hydrogelation Using a Protein-Peptide Coassembly Approach.
    Jain R; Pal VK; Roy S
    Biomacromolecules; 2020 Oct; 21(10):4180-4193. PubMed ID: 32786522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A self-assembling peptide acting as an immune adjuvant.
    Rudra JS; Tian YF; Jung JP; Collier JH
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):622-7. PubMed ID: 20080728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro.
    Koch F; Wolff A; Mathes S; Pieles U; Saxer SS; Kreikemeyer B; Peters K
    Int J Nanomedicine; 2018; 13():6717-6733. PubMed ID: 30425485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment.
    Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO
    Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.